	MANUAL TITLE	1								
GNGADHARAN		DOCUMENT NO.	: DCG 012							
SARADHA	COURSE GUIDE – CHEMISTRY -II	REV. NO.	: R0							
GANGADHARAN		DATE	: 05/04/2021							
COLLEGE	DOCUMENT TITLE	COPY	:							
	UNIT –I THERMODYNAMICS AND CHEMICAL KINETICS	PAGE 1 OF	18							
		,	Edition : 1							
			Edition : 1							
	THERMODYNAMICS									
The study of the flow of	f heat or any other form of energy into or out of	a system as it unde	erdoes a							
	ation is called Thermodynamics.									
	ation is called merinouynamics.									
THE THREE EMPIRICAL LAW	/S									
The study of thermodynamics is	s based on three broad generalisations derived	from well establishe	ed							
experimental	-									
	are known on the First Cases days d Third Laws (
results. These generalizations a	are known as the First, Second and Third law of	mermoaynamics.								
THERMODYNAMIC TERMS A	ND BASIC CONCEPTS:									
SYSTEM, BOUNDARY, SURR	OUNDINGS									
			lh a suaissana in							
	the universe which is under thermodynamic str	udy and the rest of t	ine universe is							
surroundings.										
The real or imaginary s	surface separating the system from the surround	dings is called the b	oundary.							
		-	-							
23	Surroundings	Custom								
	Surroundings	System boundary								
		1								
System _	Boundary System									
	Boundary System	1								
	Surrounding	s								
Thermodynamic syst	water contained in a hea	ker constitutes a	system							
mernodynamic syst	tem. Water contained in a bea	iner constitutes a	system.							
HOMOGENEOUS AND HETE	ROGENEOUS SYSTEMS									
When a system is unifo	orm throughout, it is called a Homogeneous Sys	stem. Examples are	: a pure single							
solid, liquid or gas, mixtures of gases, and true solution of a solid in a liquid. A homogeneous system is made of										
one phase only. A phase is defined as a homogeneous, physically distinct and mechanically separable portion of										
a system.										
A heterogeneous system is one which consists of two or more phases. In other words it is not uniform										
throughout. Examples of heterogeneous systems are : ice in contact with water, ice in contact with vapour etc.										
Here ice, water and vapour con			-							
<u> </u>										

SARADHA GANGADHARAN	MANUAL TIT COURSE GUIDE – C		DOCUMEN [®] REV. NO. DATE	ΓNO.	: DCG 012 : R0 : 05/04/2021
COLLEGE	DOCUMENT T		COPY		:
	UNIT THERMODYNAMICS AND C		PAGE 2	OF	18
					Edition: 1
TYPES OF THERMODYNAMI There are three types of boundary is closed or sealed, n	of thermodynamic systems				-
can pass through it.	o matter can pass through	t. If the boundary is i	nsulated, n	o energ	y (Say heat)
(1) Isolated System					
When the boundary is both sea isolated system is one that can A substance, say boiling water,	transfer neither matter nor	energy to and from it	ts surroundi	ngs.	Therefore, an
	Energy,		Energy		
	A matter	Energy	/ matter		
Г					
	*				
	Isolated Close				
	system syste	m syste	m /		
	,				
	Surrounding	js			
	1				
Insula bound		Imagina bounda			
Three ty	/pes of thermodynamic s	ystems.			
(2) Closed System					
Here the boundary is sealed bu	t not insulated. Therefore, a	a closed system is or	e which car	nnot tra	nsfer matter
but can transfer energy in the fo	orm of heat, work and radia	tion to and from its s	urroundings		
A specific quantity of hot water			-		
(3) Open System	,		<i>j</i> - · ·		
In such a system the boundary	is open and un-insulated. T	herefore, an open sy	stem is one	which	can transfer
both energy and matter to and					
Hot water contained in a beake	-	is an open system.			
(4)Adiabatic Systems					
Those systems, in which no the	ermal energy passes into or	out of the system a	e said to be	adiaba	atic systems
	ina chorgy passes into cr			uulubu	
PREPARED/REVISED BY : S.VIJAY/ DESIGNATION : ASST. PI DATE : 20/07/202	ROF. – CHEMISTRY	REVIEWED & APPROVE DESIGNATION DATE	:		/ANNANE .Sc Physics 20

	· · · · · · · · · · · · · · · · · · ·				
SARADHA	MANUAL TT COURSE GUIDE – C		DOCUMEN REV. NO.	NT NO.	: DCG 012 : R0
GANGADHARAN COLLEGE			DATE		: 05/04/2021
COLLEGE	DOCUMENT		COPY		:
	THERMODYNAMICS AND	CHEMICAL KINETICS	PAGE 3	3 OF	18
					Edition : 1
INTENSIVE AND EXTENSIVE	PPOPEDTIES				
The macroscopic or bulk prope		pressure, mass. etc.)	can be div	vided int	o two classes:
(<i>a</i>) Intensive properties					
(<i>b</i>) Extensive properties					
(a) Intensive Properties					
A property which does not depe	and on the quantity of matte	er present in the syste	em is know	n as Int	ensive
Property.	and on the quantity of matte			11 45 111	
Some examples of intensive pr	operties are pressure tem	nerature density and	concentra	ation	
(b) Extensive Properties		berature, density, and	Concentre		
A property that does depend or	the quantity of matter pre-	cont in the system is	called an F	vtanciv	o Droperty
Some examples of extensive p		-			
	וטטפונופט מופ יטועוווס, וועוווא		/, encopy,		103 1166
energy. THERMODYNAMIC PROCESS	PEC				
			an in collo		Those
When a thermodynamic system	-				ess. These
processes involve the change of		pressure and volume	:).		
The various types of thermodyr (1) Isothermal Processes	amic processes are.				
Those processes, in which the	temperature remains fixed	are termed isotherm		~~	
For an isothermal process $dT =$		dle termen isotnemi	ai piocessi	25.	
(2) Adiabatic Processes	0				
Those processes in which no he	act can flow into ar out of t	ha avetam, are called	adiabatic	nracaee	~~
For an adiabatic process $dq = 0$		le system, ale calleu	aulavaliu	ριουσοο	es.
(3) Isobaric Processes)				
Those processes which take pla	and an	a collect isobaric proc			
For an isobaric process $dp = 0$	ale al constant pressure ar	e called isobario proc	23353.		
$\frac{2}{4}$ (4) Isochoric Processes					
Those processes in which the v	volume remains constant av	o known as isochoric	nrocassas		
For isochoric processes $dV = 0$		e known as isochono	processes	.	
을 For isochone processes av = 0 월 (5) Cyclic Process					
H When a system in a given state	a coop through a number of	different processes	and finally	roturne	to its initial
state, the overall process is cal			and many	letums	10 115 1111101
For a cyclic process $dE = 0$, dF		5.			
For an isobaric processes $dp = 0$ (4) Isochoric Processes Those processes in which the v For isochoric processes $dV = 0$ (5) Cyclic Process When a system in a given state state, the overall process is cal For a cyclic process $dE = 0$, dF REVERSIBLE AND IRREVERS PREPARED/REVISED BY : S.VIJAY/ DESIGNATION : ASST. PI DATE : 20/07/202	ROF. – CHEMISTRY	REVIEWED & APPROVE DESIGNATION DATE	:		VANNANE 3.Sc Physics 020

:	ASST. PROF 0
:	20/07/2020

	SARADHA GANGADHARAN COLLEGE		DOCUMENT NO. REV. NO. DATE			: DCG 012 : R0 : 05/04/2021
		UNIT –I	COPY	4	OF	: 18
		THERMODYNAMICS AND CHEMICAL KINETICS	TAGE	-	01	Edition : 1

A thermodynamic reverse process is one that takes place infinitesimally slowly and its direction at any point can be reversed by an infinitesimal change in the state of the system.

When a process goes from the initial to the final state in a single step and cannot be carried in the reverse order, it is said to be an irreversible process.

DIFFERENCES BETWEEN REVERSIBLE AND IRREVERSIBLE PROCESSES

S.No	Reversible Process	Irreversible Process
1.	It takes place in infinite number of	It takes place infinite time.
	infinitesimally small steps and it would	
	take infinite time to occur.	
2.	It is imaginary as it assumes the presence	It is <i>real</i> and can be performed actually.
	of frictionless and weightless piston.	
3.	It is in equilibrium state at all stages of	It is in equilibrium state only at the initial
	the	and final stages of the operation.
	operation.	
4.	All changes are reversed when the	After this type of process has occurred
	process	all changes do not return to the initial
	is carried out in reversible direction.	state by themselves.
5.	It is extremely slow.	It proceeds at measureable speed.
6.	Work done by a reversible process is	Work done by a irreversible process is
	greater than the corresponding	smaller than the corresponding
		reversible process.

Document Converter x86)

ċ

NATURE OF HEAT AND WORK

When a change in the state of a system occurs, energy is transferred to or from the surroundings.

This energy may be transferred as heat or mechanical work.

We shall refer the term 'work' for mechanical work which is defined as force × distance.

Unit of Work: joule

REVIEWED & APPROVED BY DESIGNATION DATE

SARADHA GANGADH	COURSE GUID	JAL TITLE E – CHEMISTRY -II	DOCUMENT NO. REV. NO. DATE	: DCG 012 : R0 : 05/04/2021			
COLLEGE	DOCUI	MENT TITLE	COPY	. 05/04/2021			
A loss of large and large	_	NIT –I ND CHEMICAL KINETICS	PAGE 5 OF	18			
				Edition : 1			
	!						
1 joulo - 107 orga							
1 joule = 107 ergs							
or 1 erg = 10–7 J							
	kJ) for large quantities of work	x 1 kJ = 1000 J					
Units of Heat							
	was used for many years, is ca	alorie (cal).					
Sign Convention of Hea	<u>t:</u>						
The symbol of heat is q.	If the heat flows from the sur	roundings into the system	to raise the				
energy of the system, it	is taken to be positive, +q. If I	neat flows from the syster	m into the surround	dings, lowering			
the energy of the system	n, it is taken to be negative, -	<i>q</i> .					
<i>q</i> is (+) <i>q</i> is (–)							
Sign Convention of Wor	<u>k</u>						
The symbol of work is w	. If work is done on a system	by the surroundings and t	he energy of the s	ystem is thus			
increased, it is taken to	be positive, +w. If work is don	e by the system on the su	urroundings and er	nerav of the			
	s taken to be negative, -w.						
Summary of Sign Conve	-						
		the eveter aid ve					
	em, q is +ve Heat flows out of						
-	tem, w is +ve Work is done b	y the system, wis -ve					
INTERNAL ENERGY							
	m containing some quantity of						
	the translation kinetic energy			-			
as rotational, vibrational	energies. The kinetic and pot	ential energy of the nucle	ei and electrons wit	thin the			
individual molecules als	o contribute to the energy of t	he system.					
The total of all the possi	ble kinds of energy of a syste	m, is called its Internal Er	nergy.				
The internal energy of a	system, like temperature, pre	ssure, volume, etc., is de	termined by the st	ate of a system			
$_{\overline{\mathfrak{b}}}$ and is independent of th	e path by which it is obtained.	Hence internal energy of	f a system is a stat	e function.			
	IODYNAMICS						
S The first law of thermod	ynamics is, known as the Law	of Conservation of Energy	gy to the thermody	namic system.			
It states that: " the total of	energy of an isolated system i	emains constant though i	it may change fron	n one form to			
another".							
든 윈Mathematical statement	Mathematical statement of the First Law as :						
Heigh	$\Delta E = q - w \dots (1)$						
$\frac{d}{d}$ where $q =$ the amount	of heat supplied to the system						
$\frac{1}{0}$							
	w = work done by the system						
×86)1							
_	S.VIJAYALAKSHMI ASST. PROF. – CHEMISTRY 20/07/2020	REVIEWED & APPROVE DESIGNATION DATE		VANNANE 3.Sc Physics)20			

	SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY -II ARAN		DOCUMENT NO. REV. NO. DATE			: DCG 012 : R0 : 05/04/202	
सत्याय व हिताय व	COLLEGE	DOCUMENT TI UNIT –I	ſLE	COPY			:	
		THERMODYNAMICS AND C	HEMICAL KINETICS	PAGE	6	OF	18	
							Edition :	
to the sys	stem minus the work d	ted as : the net energy char one by the system. g and w if 2 moles of hydro						
	sibly to a pressure of							
SOLUTIC								
		al and the gas is ideal						
	$\Delta E = 0$	0						
From the	First Law							
Δ	E = q - w							
	q - w = 0							
	<i>,</i> /hen ∆ <i>E</i> = 0							
	r q = w							
	ersible process							
и	v = - <i>nRT</i> 1n (<i>P</i> 1/ <i>P</i> 2) o	r – 2.303 <i>nRT</i> log <i>P</i> 1/ <i>P</i> 2						
=	– 2 × 1.987 × 323 × 2	2.303 × log 3						
=	– 1410 cals							
Since d	q = w							
q	r = - 1410 cals							
SOLVED	PROBLEM:							
1g of wat	ter at 373 K is convert	ed into steam at the same t	emperature. The vol	ume of w	vater	becc	mes 1671 m	
on boiling	g. Calculate the chang	e in the internal energy of th	e system if the heat	of vapor	izati	on is	540 cal/g.	
SOLUTIC	ON							
As the va	porization takes place	against a constant pressure	e of 1 atmosphere, w	ork done	for	an		
irreversib	le process, w, is							
	$w = P(V_2 - V_1)$)						
	= nRT							
	=1/18 × 1.987 :	× 373						
	= 41 cal/g							
Now	q = 540 cal/g							
Since	$\Delta E = q - w$ (Find	rst Law)						
	= 540 - 41							
	le process, w, is $w = P (V_2 - V_1)$ $= nRT$ $= 1/18 \times 1.987 \times 1.977 \times 1.97$	l/g						
	D/REVISED BY : S.VIJAY	ROF. – CHEMISTRY	REVIEWED & APPROVED DESIGNATION DATE) BY	: H		VANNANE 8.Sc Physics 20	

SARADHA GANGADHARAN		MANUAL TITLE COURSE GUIDE – CHEMISTRY -II	DOCUMENT NO. REV. NO. DATE	: DCG 012 : R0 : 05/04/2021
COLLEGE	DOCUMENT TITLE UNIT –I THERMODYNAMICS AND CHEMICAL KINETICS	COPY PAGE 7 OF	: 18	
				Edition:1
SOLVED PR	OBLEM: A gas co	ntained in a cylinder fitted with a frictionless pis	ton expands agains	st a constant
external pres	sure of 1 atm from	a volume of 5 litres to a volume of 10 litres. In	doing so it absorbs	400 J therma
energy from i	ts surroundings. D	etermine ΔE for the process.		
SOLUTION				
$\Delta E =$	<i>q</i> - <i>w</i> (1)			
Here $q = 4$	00 J			
W = -	$-P(V_2-V_1) = -(1)$) (10 – 5)		
= - 5	<i>l</i> atm			
= - 5	06 J [1 / atm = 10	1.2 J]		
Substituting v	alues in (1)			
$\Delta E =$	400 J - (- 506 J)			
= 400) J + 506 J			
= 906	3 J			
ENTHALPY	OF A SYSTEM			
In a process of	carried at constant	volume (say in a sealed tube), the heat conten	t of a system is the	same as
internal energ	gy (<i>E</i>), as no <i>PV</i> w	ork is done. But in a constant-pressure process	the system (a gas)	also expends
energy in doi	ng PV work. There	fore, the total heat content of a system at const	ant pressure is equ	ivalent to the
internal energ	gy E plus the PV e	nergy. This is called the Enthalpy of the system	and is represented	by the symbo
H. Thus entha	alpy is defined by	the equation:		
	H = E + PV	(1)		

Change in Enthalpy

If Δ H be the difference of enthalpy of a system in the final state (H₂) and that in the initial state (H₁),

$$\Delta H = H_2 - H_1 \quad \dots (2)$$

Substituting the values of H2 and H1, as from (1) and (2), we have

$$\Delta H = (E_2 + P_2 V_2) - (E_1 + P_1 V_1)$$

$$= (E_2 - E_1) + (P_2 V_2 - P_1 V_1)$$

$$= \Delta E + \Delta PV$$

ights(TM) Document Converte If P is constant while the gas is expanding, we can write

$$\Delta H = \Delta E + P \Delta V$$

Or $\Delta H = \Delta E + w (w = \text{work})$...(3)

(<u>x86</u>)\PDF T According to the First Law,

20/3ools

Files

٥

ĩ

ogram PREPARED/REVISED BY : S.VIJAYALAKSHMI DESIGNATION : ASST. PROF. - CHEMISTRY DATE : 20/07/2020

REVIEWED & APPROVED BY DESIGNATION DATE

	SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY -II	DOCUMENT NO. REV. NO. DATE	: DCG 012 : R0 : 05/04/202 [,]	
	COLLEGE		COPY PAGE 8 OF	: 18 Edition : 1	
۸E-	q-w	(4)			
where $q = heats$		(+)			
From equatio					
		ccurs at constant pressure			
	hip is usually writt				
	ipt <i>p</i> means consta				
		measuring the heat of a process occurring at co	instant pressure		
	veen \triangle H and \triangle E:				
		us fuels are determined in constant volume calo	primeters. These va	alues are	
	en by the express				
, 0	$qv = \Delta E$				
When any fue		pen atmosphere, additional energy of expansior	n, positive or negat	ive, against th	
		The value of q thus actually realised, <i>i.e.</i> , $qp = \Delta$		•	
equation,			-		
	$\Delta H = \Delta E + P\Delta$	V(1)			
If gases are in	nvolved in a reacti	on, they account for most of the volume change	e as the volumes o	f solids and	
liquids are ne	gligibly small in co	omparison. Suppose we have <i>n</i> 1 moles of gases	s before reaction, a	and <i>n</i> 2 moles o	
gases after it.	Assuming ideal g	as behaviour, we have			
	$P V_2 = n_2 RT$				
	$P V_1 = n_1 RT$				
∴ P($(V_2 - V_1) = (n_2 - n_1)$	1) <i>RT</i>			
	or $P\Delta V = \Delta n F$	RT			
Substituting in	n equation (1) we l	nave,			
	$\Delta H = \Delta E + \Delta I$	n RT			
SOLVED PR	OBLEM. For the r	eaction			
	$H_2F_2(g) \longrightarrow F$	$I_2(g) + F_2(g)$			
		al/mole at 25° C			
Calculate ΔH	for the reaction.				
SOLUTION					
	$\Delta H = \Delta E + \Delta n I$	RT			
	$\Delta n = n_2 - n_1$				
SOLVED PR Calculate ∆ <i>H</i> SOLUTION					

	SARADHA GANGADHARAN COLLEGE	MANUAL TITLE COURSE GUIDE – CHEMISTRY -II DOCUMENT TITLE UNIT –I THERMODYNAMICS AND CHEMICAL KINETICS	 COPY		: DCG 012 : R0 : 05/04/2021 : 18
Now	<i>n</i> ₂ = 1 + 1 = 2				Edition : 1

 $n_1 = 1$ $n_2 - n_1 = 2 - 1 = 1$ $\Delta H = \Delta E + 1 \times 1.987 \times 298/1000$ = -14.2 + 0.592= -13.6 kcal/mole

MOLAR HEAT CAPACITIES

By heat capacity of a system we mean the capacity to absorb heat and store energy. As the system absorbs heat, it goes into the kinetic motion of the atoms and molecules contained in the system. This increased kinetic energy raises the temperature of the system. If q calories is the heat absorbed by mass m and the temperature rises from T1 to T2, the heat capacity (c) is given by the expression

$$c = \frac{q}{m \times (T_2 - T_1)} \tag{1}$$

Thus heat capacity of a system is the heat absorbed by unit mass in raising the temperature by one degree (K or °C) at a specified temperature. When mass considered is 1 mole, the expression (1) can be written as

$$C = \frac{q}{T_2 - T_1} = \frac{q}{\Delta T} \qquad \dots (2)$$

where C is denoted as Molar heat capacity.

The molar heat capacity of a system is defined as the amount of heat required to raise the temperature of one mole of the substance (system) by 1 K. Since the heat capacity (C) varies with temperature; its true value will be given as

$$C = \frac{dq}{dT}$$

where dq is a small quantity of heat absorbed by the system, producing a small temperature rise dT. Thus the molar heat capacity may be defined as the ratio of the amount of heat absorbed to the rise in temperature.

Units of Heat Capacity

The usual units of the molar heat capacity are calories per degree per mole (cal K-1 mol-1), or joules per degree per mole (J K-1 mol-1), the latter being the SI unit. Heat is not a state function, neither is heat capacity.

EXOTHERMIC AND ENDOTHERMIC REACTIONS

PREPARED/REVISED BY : S.VIJAYALAKSHMI DESIGNATION DATE

86)

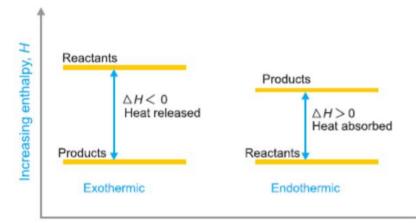
: ASST. PROF. - CHEMISTRY : 20/07/2020

REVIEWED & APPROVED BY DESIGNATION DATE

	SARADHA GANGADHARAN COLLEGE	MANUAL TITLE COURSE GUIDE – CHEMISTRY -II	DOCUMENT NO. REV. NO. DATE			: DCG 012 : R0 : 05/04/2021
COLLE		DOCUMENT TITLE UNIT –I THERMODYNAMICS AND CHEMICAL KINETICS	COPY	10	OF	: 18 Edition : 1

Let us consider a general reaction at constant pressure,

 $A + B \rightarrow C + D$


If H_A, H_B, H_C and H_D be the enthalpies of A, B, C and D respectively, the heat of reaction at constant pressure *viz.*, ΔH is equal to the difference in enthalpies of the products and the reactants *i.e.*,

 $\Delta H = H_{\text{products}} - H_{\text{reactants}}$

 $= (H_{C} + H_{D}) - (H_{A} + H_{B})$

The value of ΔH may be either zero, negative or positive. Where ΔH is zero, the enthalpies of the products and reactants being the same, the heat is evolved or absorbed. In case ΔH is negative, the sum of enthalpies of the products is less than that of the reactants and the difference in enthalpy is given out in the form of heat. Such reactions which are accompanied by the evolution of heat energy are called Exothermic reactions.

When ΔH is positive, the enthalpy or heat content of the reactants and an equivalent of heat is absorbed by the system from the surroundings.

Enthalpy diagram for an exothermic and endothermic reaction.

Such reactions which are accompanied by absorption of heat are called Endothermic reactions. Thus for an exothermic reaction Hp < Hr and $\Delta H = -ve$, for an endothermic reaction Hp > Hr and $\Delta H = +ve$. Examples of endothermic and exothermic process:

Exothermic processes Making ice cubes

Formation of snow in clouds

Condensation of rain from water vapours

Endothermic processes Melting ice cubes Conversion of frost to water vapour Evaporation of water

86)

REVIEWED & APPROVED BY DESIGNATION DATE

SARADHA GANGADHARAN COLLEGE	MANUAL TT COURSE GUIDE – C DOCUMENT UNIT – THERMODYNAMICS AND (CHEMISTRY -II	DOCUMENT N REV. NO. DATE COPY PAGE 11	NO. : DCG 012 : R0 : 05/04/2021 : OF 18 Edition : 1	
DIFFERENCE BETWEEN EXC	THERMIC AND ENDOTH	ERMIC REACTIONS	5:		
Endoth	nermic reaction	Exothermic	reaction		
is absorbe 2. Sum of en is greate enthalpies i.e. Σ _P H > 3. Heat of positive.	ed from surroundings. athalpies of products er than sum of s of reactants $Σ_R H$ reaction, ΔH is are less stable than → CO _{2(g)}	 In exothermic regiven out to sur Sum of enthalpi is less than sum of reactants. Σ_PH < Σ_RH Heat of reactants. Products are more reactants. N_{2(g)} + O_{2(g)} → 2N ΔH = +180 kJ 	croundings. ies of product n of enthalpi tion, ΔH ore stable th	cts ies is	
 SPONTANEOUS PROCESSES AND NON-SPONTANEOUS: A process which proceeds of its own accord, without any outside assistance, is termed a spontaneous or natural process. The reverse process which does not proceed on its own, is referred to as a non spontaneous or unnatural process. In general, the tendency of a process to occur naturally is called the spontaneity. CRITERIA OF SPONTANEITY Some important criteria of spontaneous physical and chemical changes are listed below. (1) A spontaneous change is one-way or unidirectional. For reverse change to occur, work has to be done. (2) For a spontaneous change to occur, time is no factor. A spontaneous reaction may take place rapidly or very slowly. (3) If the system is not in equilibrium state (unstable), a spontaneous change is inevitable. The change will continue till the system attains the state of equilibrium. 					
 (4) Once a system is in equilibrium state, it does not undergo any further spontaneous change in state if left undisturbed. To take the system away from equilibrium, some external work must be done on the system. (5) A spontaneous change is accompanied by decrease of internal energy or enthalpy (Δ<i>H</i>). ENTROPY 					
PREPARED/REVISED BY : S.VIJAYA DESIGNATION : ASST. PF DATE : 20/07/202	ROF. – CHEMISTRY	REVIEWED & APPROVE DESIGNATION DATE	: HC	MANIVANNANE DD – B.Sc Physics /07/2020	

SARADHA GANGADHARAN COLLEGE	COURSE GUIDE – CHEMISTRY -II		IENT I D.	: DCG 012 : R0 : 05/04/2021	
	DOCUMENT TITLE	COPY			:
	THERMODYNAMICS AND CHEMICAL KINETICS	PAGE	12	OF	18
					Edition:1
Entropy is a thermodynamic state	te quantity that is a measure of the randomnes	s or diso	rder c	of the	molecules of

The symbol of entropy is S, while the change in disorder accompanying a process from start to completion is represented by ΔS . The entropy of a system is a state function and depends only on the initial and final states of the system. The change in entropy, Δ S, for any process is given by the equation,

 $\Delta S = S$ final -S initial

When

 $S_{\text{final}} > S_{\text{initial}}$, ΔS is positive.

A process accompanied by an increase in entropy tends to be spontaneous.

Numerical definition of entropy:

Entropy could be precisely defined as: for a reversible change taking place at a fixed temperature (T), the

change in entropy (Δ S) is equal to heat energy absorbed or evolved divided by the temperature (T). That is,

$$\Delta S = q / T$$

If heat is absorbed, then ΔS is positive and there will be increase in entropy. If heat is evolved, ΔS is negative and there is a decrease in entropy.

STANDARD ENTROPY:

The absolute entropy of a substance at 25°C (298 K) and one atmosphere pressure is called the standard entropy; S^o.

Once we know the entropies of a variety of substances, we can calculate the standard entropy change, ΔS^{0} , for chemical reactions.

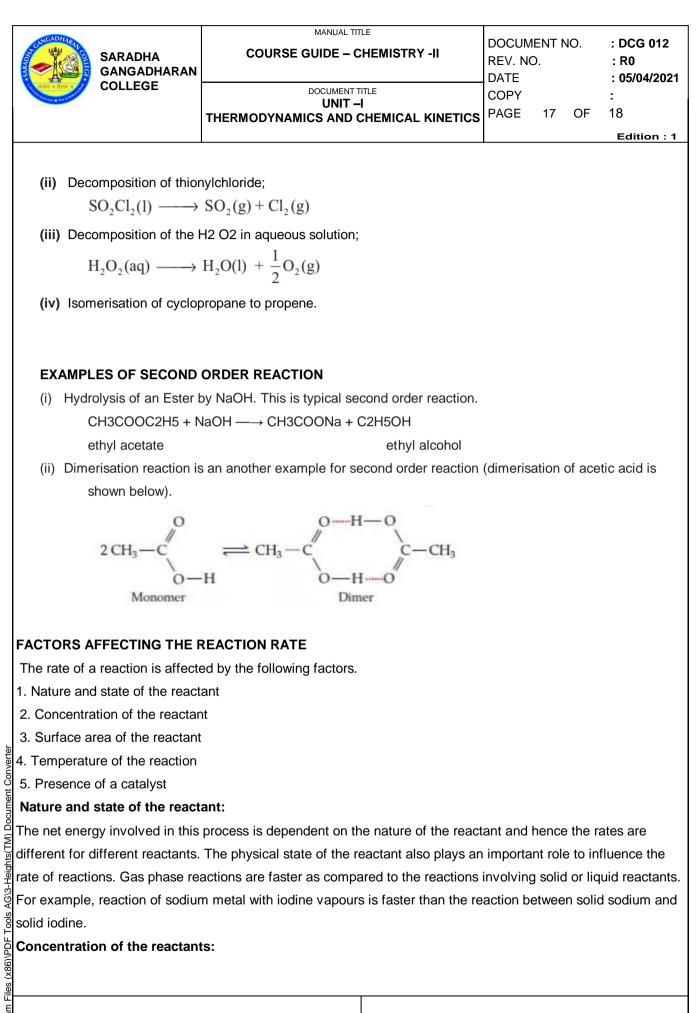
 $\Delta S^{\circ} = \Sigma S^{\circ}$ (products) – ΣS° (reactants)

STATEMENT OF THE SECOND LAW

The second law of thermodynamics states that: whenever a spontaneous process takes place, it is accompanied by an increase in the total energy of the universe. More specifically, we take the term 'universe' to mean the system and the surroundings. Thus,

 $\Delta S_{univ} = \Delta S_{syst} + \Delta S_{surr}$

- The second law, as stated above, tells us that when an irreversible spontaneous process occurs, the . entropy of the system and the surroundings increases. In other words $\Delta S_{univ} > 0$.
- When a reversible process occurs, the entropy of the system remains constant. $\Delta S_{univ} = 0$.
- Since the entire universe is undergoing spontaneous change, the second law can be most generally and concisely stated as: the entropy of the system is constantly increasing.


SARADHA GANGADHARAN	MANUAL TIT COURSE GUIDE – C		DOCUMEN ⁻ REV. NO. DATE	ΓNO.	: DCG 012 : R0 : 05/04/2021
COLLEGE	DOCUMENT T		COPY		:
	- UNIT THERMODYNAMICS AND (PAGE 13	B OF	18
					Edition: 1
The branch of Physical chemis Chemical Kinetics includes: (1) The rate of the reactions an (2) The factors as temperature (3) The mechanism or the sequ The knowledge of the rate of re great importance in selecting of	nd rate laws. , pressure, concentration ar uence of steps by which a re eactions is very valuable to	e of reactions is calle nd catalyst that influe eaction occurs. understand the chem	nces the rat	e of a re tions. It	eaction. is also of
maximum yield.					
REACTION RATE					
The rate of a reaction tells as the	o what speed the reaction o $A \longrightarrow B$	occurs. Let us conside	er a simple r	eaction	
The concentration of the reacta	ant A decreases and that of	B increases as time	passes. The	rate of	reactions is
defined as the change in cor	ncentration of any of react	tant or products per	unit time.	For the	given reaction
the rate of reaction may be equ	ual to the rate of disappeara	ance of A which is equ	ual to the ra	te of ap	pearance of B.
Thus rate of reaction = rate of					
= rate of appea - d [A]					
or rate = dt					
d [B]					
ស៊ី <i>dt</i> where [] represents the concer				-	-
concentration. Negative sign sl	nows the concentration of th	ne reactant A decreas	ses whereas	the pos	sitive sign
indicates the increase in conce	ntration of the product B.				
$\frac{\mathfrak{P}}{\mathfrak{P}}$ Reactions rate has the units of	concentration divided by tir	me. We express cond	centrations i	n moles	per litre
وم (mol/litre or mol/1 or mol 1–1) ا	but time may be given in ar	ny convenient unit se	cond (s), mi	nutes (n	nin), hours (h),
Image: Stress of LD] = + dt where [] represents the concer concentration. Negative sign sl indicates the increase in conce UNITS OF RATE Reactions rate has the units of (mol/litre or mol/1 or mol 1–1) days (d) or possible years. The PREPARED/REVISED BY : S.VIJAY DESIGNATION : ASST. P ODATE : 20/07/20	refore, the units of reaction	rates may be,			
الم الم PREPARED/REVISED BY : S.VIJAY DESIGNATION : ASST. P ن DATE : 20/07/20	ROF. – CHEMISTRY	REVIEWED & APPROVE DESIGNATION DATE	:		ANNANE Sc Physics 20

SARADHA GANGADHARAN COLLEGE	MANUAL TITLE COURSE GUIDE – CHEMISTRY -II	DOCUMENT NO. REV. NO. DATE	: DCG 012 : R0 : 05/04/2021
	DOCUMENT TITLE UNIT –I	COPY	:
	THERMODYNAMICS AND CHEMICAL KINETICS	PAGE 14 OF	18
			Edition : 1
mole/litre sec or mol 1-	1.0		
mole/litre min or mol 1			
mole/litre hour or mol 1			
mole/intre modif of molifi			
RATE LAWS			
The rate of a reaction is direct	ctly proportional to the reactant concentratio	ns. each concent	ration being
raised to some power.		,	0
Thus for a substance A underg	oing reaction,		
rate \rightarrow [A] <i>n</i>			
or rate = $k [A] n (1)$			
For a reaction			
$2A + B \longrightarrow products$			
the reaction rate with respect to	A or B is determined by varying the concentrat	ion of one reactant	, keeping that
of the other constant. Thus the	rate of reaction may be expressed as		
rate = $k [A]m [B]n(2)$			
Expressions such as (1) and (2) tell the relation between the rate of a reaction a	and reactant conce	entrations.
An expression which shows	how the reaction rate is related to concentra	tions is called the	e rate law or
rate equation.			
ORDER OF A REACTION			
The order of a reaction is def	ined as the sum of the powers of concentrat	ions in the rate la	w.
Let us consider the example of	a reaction which has the rate law		
rate = $k [A]m [B]n(1)$			
The order of such a reaction is	(m + n).		
	o be defined with respect to a single reactant. The	hus the reaction or	der with respe
The order of a reaction can als		and wanted frame A to	
The order of a reaction can als to A is <i>m</i> and with respect to B	it is n . The overall order of reaction $(m + n)$ m	ay range from 1 to	3 and can be
The order of a reaction can als to A is <i>m</i> and with respect to B fractional.	it is <i>n</i> . The overall order of reaction (<i>m</i> + <i>n</i>) m	ay range from 1 to	3 and can be
The order of a reaction can als to A is <i>m</i> and with respect to B fractional. Examples of reaction order:	it is n . The overall order of reaction $(m + n)$ m	ay range from 1 to	3 and can be
The order of a reaction can als to A is <i>m</i> and with respect to B fractional. Examples of reaction order: Reactions may be classified ac	it is <i>n</i> . The overall order of reaction $(m + n)$ m cording to the order. If in the rate law (1) above	ay range from 1 to	3 and can be
The order of a reaction can als to A is <i>m</i> and with respect to B fractional. Examples of reaction order: Reactions may be classified ac (<i>i</i>) $m + n = 1$, it is first ord	it is <i>n</i> . The overall order of reaction $(m + n)$ m cording to the order. If in the rate law (1) above der reaction order reaction der reaction	ay range from 1 to	3 and can be

REVIEWED & APPROVED BY DESIGNATION DATE

SARADHA GANGADHAR		COURSE GUIDE – CHEMISTRY -II		DOCUMENT NO. REV. NO. DATE		: DCG 012 : R0 : 05/04/2021	
COLLEGE	DOCUMEN UNIT		COPY			:	
	THERMODYNAMICS AND		PAGE	15	OF	18	
						Edition : 1	
	RATE LAW	REACTION	ORDER				
	rate = $k [N_2O_5]$	1					
	rate = $k [H_2] [I_2]$	1+1=2					
	rate = $k [NO_2]^2$	2					
	rate = $k [[H_2] [NO]^2$	1+2=3					
	rate = k [CHCl ₃] [Cl ₂] ^{1/2}	$1 + \frac{1}{2} = 1\frac{1}{2}$					
MOLECULARITY OF A RI	EACTION						
Chemical reactions may be	e classed into two types :						
(a) Elementary reactions							
(b) Complex reactions							
An elementary reaction is	a simple reaction which occu	rs in a single step.					
A complex reaction is tha	t which occurs in two or more	steps.					
Molecularity of an Eleme	ntary Reaction						
-	nentary reaction is defined as	the number of react	ant mole	cule	s invo	olved in a	
reaction.	,						
Thus the molecularity of ar	elementary reaction is 1, 2, 3	B. etc., according as or	ie. two or	thre	e read	tant	
-	in the reaction. The elementa	-					
	ar and termolecular respectiv		oleoularit	y 1, 2			
(a) Unimolecular reaction	-	ciy. Thus we have.					
. ,							
$A \longrightarrow \text{pro}$							
Examples are: (i) $Br_2 \longrightarrow$	2Br						
H-C-CC	OOH H-C-	-соон					
(<i>ii</i>) H—C—CO	оон соон-с-	—н					
maleic acid	fumaric	acid					
(b) Bimolecular reactions	: (molecularity = 2)						
$A + B \longrightarrow product$							
$A + A \longrightarrow product$							
Examples are:							
	$H_2O \longrightarrow CH_3COOH + C_2H_5OH$						
Ethyl acetate acetic acid et	inyi alcohol						
(ii) $2HI \longrightarrow H_2 + I_2$							
(<i>c</i>) Termolecular reaction	s : (molecularity = 3)						
	IJAYALAKSHMI ST. PROF. – CHEMISTRY 07/2020	REVIEWED & APPROVE DESIGNATION DATE	D BY	: HO		ANNANE Sc Physics 0	

CA		MANUAL TIT	LE			
AT CAN WE	SARADHA	COURSE GUIDE – C	HEMISTRY -II	DOCUMENT I	NO.	: DCG 012
The second se	GANGADHARAN		-	REV. NO.		: R0
* आँ सत्याय व	COLLEGE	DOCUMENT T	ITLE	DATE		: 05/04/2021
and the second s	a par the	UNIT -	=	PAGE 16	OF	18
		THERMODYNAMICS AND C	HEMICAL KINETICS		01	Edition : 1
						Lution . 1
	$A + B + C \longrightarrow product$	te				
Evom	bles are :	15				
()	$2NO + O_2 \longrightarrow 2NO_2$					
(ii)	$2NO + Cl_2 \longrightarrow 2NOCl$					
1						
Molec	ularity and Order are Id	lentical for Elementary Re	actions or Steps			
The ra	te of an elementary reac	tion is proportional to the nu	umber of collisions be	etween molec	ules (or atoms) of
reactio	ns. The number of collis	ions in turn is proportional t	o the concentration c	of each reacta	int mol	lecule (or
	Thus for a reaction.					
atom).						
	$2A + B \longrightarrow \text{products}$					
	rate — \rightarrow [A] [A] [B]					
	or rate = $k [A]^2 [B]$ (rate	e law)				
Two m	olecules of A and one m	olecule of B are participatir	ng in the reaction and	l, therefore, m	nolecu	larity of the
reactio	on is 2 + 1 = 3. The sum of	of powers in the rate law is	2 + 1 and hence the	reaction orde	r is als	o 3. Thus the
molec	ularity and order for an	elementary reaction are	equal.			
S.NO	ORDER OF A REACT	ION	MOLECULARITY	OF A REACT	ION	
1	It is the sum of power	s of the concentration	It is number of rea	cting species	s unde	ergoing
	terms in the rate law ur	ndergoing simultaneous	simultaneous col	lision in the e	elemei	ntary or
	collision in the rate law	expression.	simple reaction.			
2	It is an experimentally	v determined value.	It is a theoretical of	concept.		
3	It can have fractional	value.	It is always a whol	e number.		
4	It can assume zero val	ue.	It cannot have zer	o value.		
5	Order of a reaction car	ι change with the	Molecularity is inva	ariant for a ch	nemica	al
	conditions such as pres	ssure, temperature,	reaction.			
	concentration.					
	PLES FOR THE FIRST					
(i)	Decomposition of dinitr	ogen pentoxide				
	$N_{0}(\sigma) \longrightarrow c$	$2NO_2(g) + \frac{1}{2}O_2(g)$				
EXAM (i)	1,205(B)	2 2 2 2 2				

PREPARED/REVISED BY : S.VIJAYALAKSHMI DESIGNATION DATE

REVIEWED & APPROVED BY DESIGNATION DATE

	SARADHA GANGADHARAN	COURSE GUIDE – CHEMISTRY -II	DOCUM REV. NC DATE		NO.	: DCG 012 : R0 : 05/04/2021	
CC	DLLEGE		COPY	18	OF	: 18	

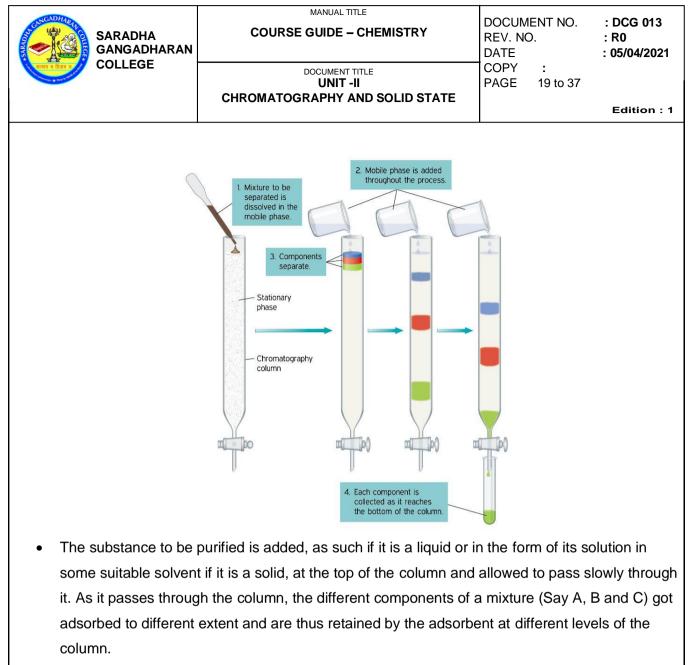
The rate of a reaction increases with the increase in the concentration of the reactants. Higher the concentration, greater is the possibility for collision and hence the rate.

Effect of surface area of the reactant:

In heterogeneous reactions, the surface areas of the solid reactants play an important role in deciding the rate. For a given mass of a reactant, when the particle size decreases surface area increases. Increase in surface area of reactant leads to more collisions per litre per second, and hence the rate of reaction is increased. For example, powdered calcium carbonate reacts much faster with dilute HCI than with the same mass of CaCO₃ as marble.

Effect of presence of catalyst:

Significant changes in the reaction can be brought out by the addition of a substance called catalyst. A catalyst is substance which alters the rate of a reaction without itself undergoing any permanent chemical change. They may participate in the reaction, but again regenerated and the end of the reaction.


EXCERCISE:

SARADHA GANGADHARAN COLLEGE	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 013 : R0 : 05/04/2021
	DOCUMENT TITLE UNIT -II CHROMATOGRAPHY AND SOLID STATE	COPY : PAGE 19 to 37	
			Edition : 1
0 1 7	be defined as the technique for the separa ght about by the differential movement of the		•
porous medium under the infl	uence of a moving solvent.		
Chromatography is ba	used on the general principle of distributing	the components of	of a mixture
of organic compounds betwee	en two phases – a stationary phase and a	moving phase.	
1. The stationary phase	can be a solid or liquid supported on a so	lid, while the movir	ng phase is a
liquid or a gas.			

2. When the stationary phase is a solid, the basis of separation is adsorption; when it is a liquid, the basis is partition.

The different chromatographic techniques used are:

- 1. Column chromatography (CC),
- 2. Thin-layer chromatography (TLC),
- 3. paper chromatography (PC),
- 4. Gas-liquid chromatography (GLC) and ion-exchange chromatography.
- a) Column Chromatography
 - The simplest chromatographic method is column chromatography. It is carried out in a long glass column having a stop-cock near the bottom.
 - To start the operation, a plug of cotton or glass wool is placed at the bottom of the column to support the adsorbent powder.
 - The tube is packed uniformly with suitable adsorbent. This constitutes what is known as the stationary phase.
 - The commonly employed adsorbents are activated aluminium oxide (alumina), magnesium oxide, silica gel and starch.
 - A loose plug of cotton or glass wool is then placed at the top of the adsorbent column.

- The components which are adsorbed very strongly are retained at the top while others are . retained at lower levels. In this way different zones or bands are formed in the column which contains different components of a mixture.
- As soon as the last portion of the substances enters the column, a selected solvent, known as eluent, is added to the column. This acts as moving phase.
- The elements dissolve out the different components from the various zones selectively and thus `take out' the different bands in the form of fractions which are collected separately.

b) Thin Layer Chromatography (TLC)

Thin layer chromatography (TLC) is another type of adsorption chromatography, which involves separation of the substances of a mixture over a thin layer of an adsorbent.

(x86)\PDF Tools AG\3-Heights(TM) Document Converter

ų,

ċ

SARADHA GANGADHARAN COLLEGE	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 013 : R0 : 05/04/2021
	DOCUMENT TITLE UNIT -II	COPY : PAGE 19 to 37	
	CHROMATOGRAPHY AND SOLID STATE		
			Edition:1
• A thin layer (about 0.	2mm thick) of an adsorbent (Silica gel or a	lumina) is spread o	
•	2mm thick) of an adsorbent (Silica gel or a The plate is known as thin layer chromato	<i>,</i> .	

- end of the TLC plate.
- The glass plate is then placed in a closed jar containing the solvent (Below 2cm height). As the • solvent jar moves up the plate, the components of mixture move up along the plate to different distances depending on this degree of adsorption and separation takes place.
- The relative adsorption of each component of the mixture is expressed in terms of its retention factor ie.. Rf Value

Distance moved by the substance from base line (x)

 $R_f =$

Distance moved by the solvent from base line (y)

c) Paper Chromatography

It is an important and useful class of partition chromatography. In this technique, the stationary phase is considered to be made up of water molecules bound to the cellulose network (inert support) of the paper. The

mobile phase, known as the developing solvent consists of either one solvent or a mixture of different solvents. Separation of the mixture into pure compounds takes place by the partitioning of different compounds

between these two liquid phases. The mobile phase travels by capillary action through the paper.

Depending upon the way the solvent travels on the paper, there are three types of paper chromatography.

i) Ascending Paper Chromatography: The mobile phase moves upwards on the paper strip in this case. ii) Descending Paper Chromatography: The mobile phase in this case moves downward on the paper strip.

iii) Circular or radial paper chromatography: The mobile phase moves horizontally along a circular sheet of paper in this case.

In the ascending paper chromatography, the mixture of compounds is applied on the paper as a spot little above the lower end and then this end is dipped in the solvent. When the solvent has raised

DESIGNATION

DATE

SARADHA GANGADHARAN COLLEGE	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 013 : R0 : 05/04/2021
	DOCUMENT TITLE UNIT -II CHROMATOGRAPHY AND SOLID STATE	COPY : PAGE 19 to 37	Edition : 1

more than two third length of the paper, then it is removed from the solvent. The paper is dried and is known as chromatogram.

Now the spots for different compounds can be visualised using some suitable chemicals. The ratio of the distance travelled by the compound in a particular solvent to that the distance travelled by the solvent is a constant and is known as retention factor (Rf). This value is used in identifying the compounds.

Distance travelled by the compound

Rf =

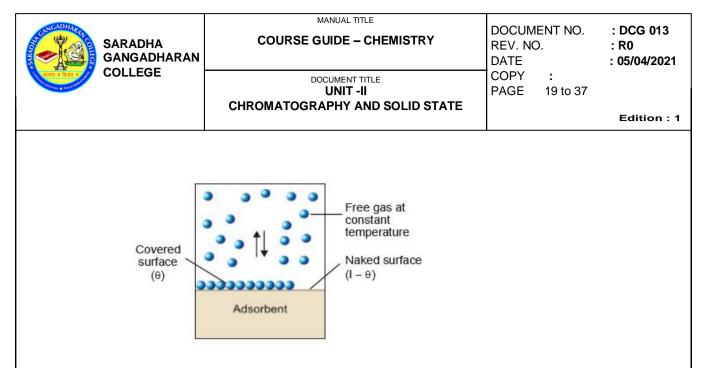
Distance travelled by the Solvent

Adsorption isotherm:

- It is the graph between the amounts of adsorbate (x) adsorbed on the surface of adsorbent (m) and pressure at constant temperature.
- Different adsorption isotherms have been Freundlich, Langmuir and BET theory.
 - Langmuir isotherm (adsorbed layer one molecule thick)
 - Freundlich isotherm (Heterogeneous adsorbent surface with different adsorption sites)
 - Brunauer, Emmertt and Teller (BET) isotherm (molecules can be adsorbed more than one layer thick)

LANGMUIR ADSORPTION ISOTHERM

Langmuir (1916) derived a simple adsorption isotherm based on theoretical considerations. It was named after him.


Langmuir made the following assumptions.

- (1) The layer of the gas adsorbed on the solid adsorbent is one-molecule thick.
- (2) The adsorbed layer is uniform all over the adsorbent.
- (3) There is no interaction between the adjacent adsorbed molecules.

Derivation of Langmuir Isotherm

Langmuir considered that the gas molecules strike a solid surface and are thus adsorbed. Some of these molecules then evaporate or are 'desorbed' fairly rapidly. A dynamic equilibrium is eventually established between the two opposing processes, adsorption and desorption.

ò

If θ is the fraction of the total surface covered by the adsorbed molecules, the fraction of the naked area is $(1 - \theta)$. The rate of desorption (R_d) is proportional to the covered surface θ . Therefore,

 $R_d = k_d \theta$

where k_d is the rate constant for the desorption process.

The rate of adsorption (R_a) is proportional to the available naked surface (1 $-\theta$) and the pressure (P) of the gas.

$$R_a = k_a (1 - \theta) P$$

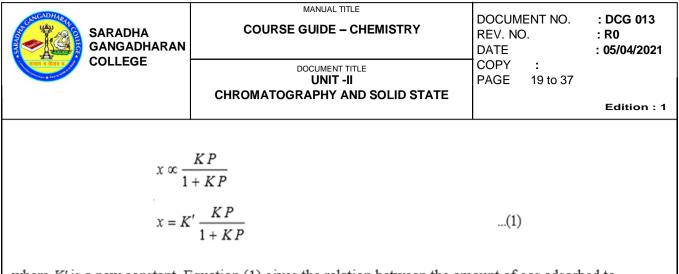
where k_a is rate constant for the adsorption process.

At equilibrium the rate of desorption is equal to the rate of adsorption. That is,

$$\begin{aligned} k_d \theta &= k_a (1 - \theta) P \\ \theta &= \frac{k_a P}{K_a + k_a P} \\ \theta &= \frac{(k_a / k_d) P}{1 + (K_a / k_d) P} \\ \theta &= \frac{KP}{1 + KP} \end{aligned}$$

Where K is the equilibrium constant and is referred to as the adsorption coefficient.

The amount of the gas adsorbed per gram of the adsorbent, x, is proportional to θ . Hence,

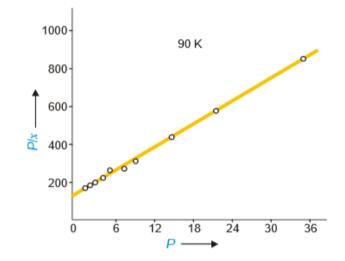

PREPARED/REVISED BY : S.VIJAYALAKSHMI DESIGNATION DATE

: ASST. PROF. - CHEMISTRY : 30/07/2020

REVIEWED & APPROVED BY DESIGNATION DATE

: K.MANIVANNANE : HOD - B.Sc(PHYSICS) : 01/08/2020

ċ


where K' is a new constant. Equation (1) gives the relation between the amount of gas adsorbed to the pressure of the gas at constant temperature and is known as Langmuir Adsorption isotherm.

In order to test the Langmuir isotherm, equation (1) is rearranged so that

$$\frac{P}{x} = \frac{1}{K'} + \frac{P}{K''}$$
...(2)

where K'' constant = K'/K.

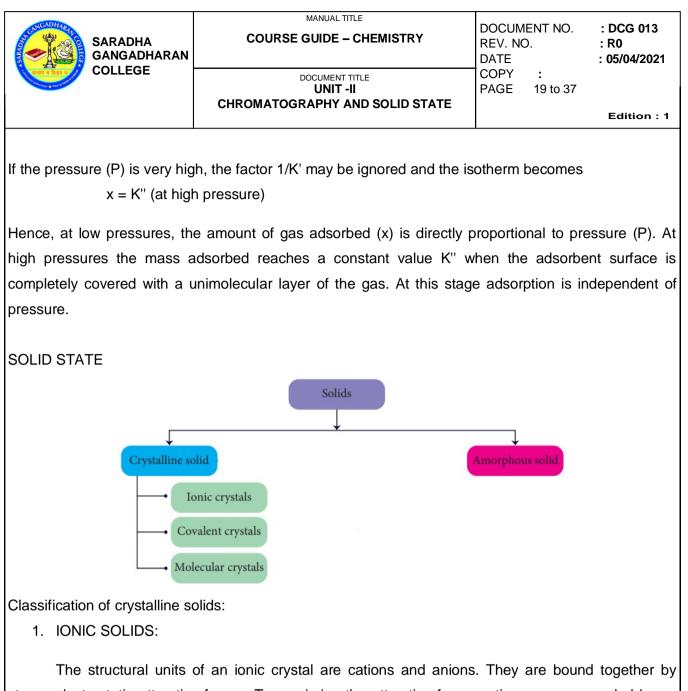
The equation (2) is similar to an equation for a straight line. Thus if P/x is plotted against P, we should get a straight line with slope 1/K'' and the intercept 1/K'. It was found in most cases that the actual curves were straight lines. Thus Langmuir isotherm stood verified.

AG\3-Heights(TM) x86)\PDF Tools

م

ċ

Langmuir Isotherm holds at low pressures but fails at high pressures As stated above, Langmuir Adsorption isotherm may be written as


$$\frac{P}{x} = \frac{1}{K'} + \frac{P}{K''}$$

If the pressure (P) is very low, the factor P/K" may be ignored and the isotherm assumes the form x = K' P (at low pressure)

PREPARED/REVISED BY : S.VIJAYALAKSHMI DESIGNATION DATE : 30/07/2020

: ASST. PROF. - CHEMISTRY

REVIEWED & APPROVED BY DESIGNATION DATE

strong electrostatic attractive forces. To maximize the attractive force, cations are surrounded by as many anions as possible and vice versa. Ionic crystals possess definite crystal structure; many solids are cubic close packed. Example: The arrangement of Na⁺ and Cl⁻ ions in NaCl crystal.

Characteristics:

1. Ionic solids have high melting points.

2. These solids do not conduct electricity, because the ions are fixed in their lattice positions.

3. They do conduct electricity in molten state (or) when dissolved in water because, the ions are free to move in the molten state or solution.

4. They are hard as only strong external force can change the relative positions of ions.

2. COVALENT SOLIDS:

- FDF (x86)

۵

SARADHA GANGADHARAN COLLEGE	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE		: DCG 013 : R0 : 05/04/2021
	DOCUMENT TITLE UNIT -II CHROMATOGRAPHY AND SOLID STATE	COPY PAGE	: 19 to 37	Edition : 1

In covalent solids, the constituents (atoms) are bound together in a three dimensional network entirely by covalent bonds. Examples: Diamond, silicon carbide etc. Such covalent network crystals are very hard, and have high melting point. They are usually poor thermal and electrical conductors.

3. MOLECULAR SOLIDS:

In molecular solids, the constituents are neutral molecules. They are held together by weak van der Waals forces. Generally molecular solids are soft and they do not conduct electricity. These molecular solids are further classified into three types.

(i) In non polar molecular solids:

The constituent molecules are held together by weak dispersion forces or London forces. They have low melting points and are usually in liquids or gaseous state at room temperature. Examples: naphthalene, anthracene etc.,

(ii) Polar molecular solids:

The constituents are molecules formed by polar covalent bonds. They are held together by relatively strong dipole-dipole interactions. They have higher melting points than the nonpolar molecular solids. Examples are solid CO2, solid NH3 etc.

(iii) Hydrogen bonded molecular solids:

The constituents are held together by hydrogen bonds. They are generally soft solids under room temperature. Examples: solid ice (H2 O), glucose, urea etc.,

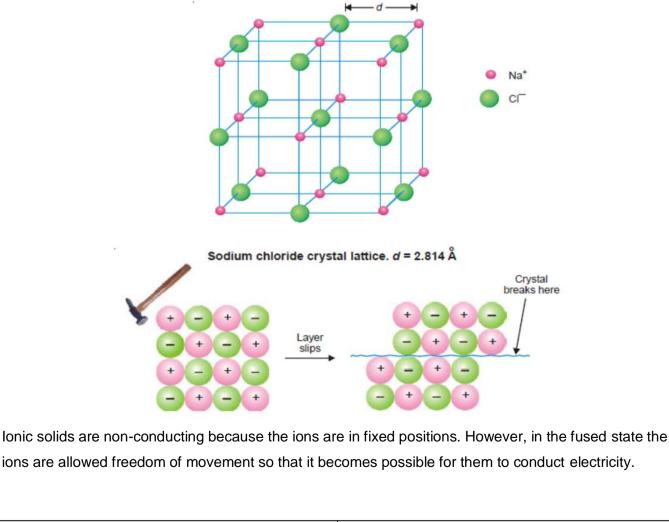
4. METALLIC SOLIDS:

In metallic solids, the lattice points are occupied by positive metal ions and a cloud of electrons pervades the space. They are hard, and have high melting point. Metallic solids possess excellent electrical and thermal conductivity. They possess bright lustre. Examples: Metals and metal alloys belong to this type of solids, for example Cu, Fe, Zn, Ag, Au, etc.

CLASSIFICATION OF CRYSTALS ON THE BASIS OF BONDS

Crystals can also be classified on the basis of the bonds that hold the ions, molecules or atoms together in the crystal lattice. Thus we have:

- (a) Ionic crystals
- (b) Molecular crystals
- (c) Network covalent crystals
- (d) Metallic crystals


ò

REVIEWED & APPROVED BY DESIGNATION DATE

SARADHA GANGADHARAN COLLEGE	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 013 : R0 : 05/04/2021
	DOCUMENT TITLE UNIT -II CHROMATOGRAPHY AND SOLID STATE	COPY : PAGE 19 to 37	Edition : 1

IONIC CRYSTALS

In an ionic crystal the lattice is made of positive and negative ions. These are held together by ionic bonds - the strong electrostatic attractions between oppositely charged ions. Consequently, the cations and anions attract one another and pack together in an arrangement so that the attractive forces maximize. The sodium chloride lattice shown in Figure is an example. Each ion is surrounded by neighbours of opposite charge and there are no separate molecules. Since the ions are fixed in their lattice sites, typical ionic solids are hard and rigid with high melting points. In spite of their hardness, ionic solids are brittle. They shatter easily by hammering. By hammering, a layer of ions slips away from their oppositely charged neighbours and brings them closer to ions of like charge. The increase of electrostatic repulsions along the displaced plane causes the crystal to break.

AG\3-Heights(TM) Document Converter

(x86) ď

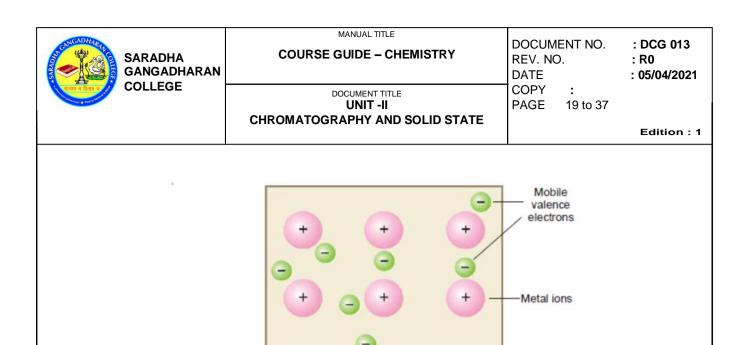
م

ï

REVIEWED & APPROVED BY DESIGNATION DATE

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 013 : R0 : 05/04/2021
COLLEGE	DOCUMENT TITLE UNIT -II CHROMATOGRAPHY AND SOLID STATE	COPY : PAGE 19 to 37	Edition :
IOLECULAR CRYSTALS			
	molecules are the structural units. They a	re directional.	
• In molecular crystals,	molecules are the structural units. They a ther by van der Waals' forces.	re directional.	
In molecular crystals,These are held toget			n be easily
 In molecular crystals, These are held toge When this type of cry 	ther by van der Waals' forces.		n be easily
 In molecular crystals, These are held toge When this type of cry disturbed. Therefore 	ther by van der Waals' forces. stal melts, it is only the weak van der Waa		n be easily

COVALENT CRYSTALS


- In this type of crystals atoms occupy the lattice sites.
- These atoms are bonded to one another by covalent bonds.
- The atoms interlocked by a network of covalent bonds produce a crystal which is considered to • be a single giant molecule. Such a solid is called a network covalent solid or simply covalent solid.
- Since the atoms are bound by strong covalent bonds, these crystals are very hard and have very high melting points.

METALLIC CRYSTALS

- The crystals of metals consist of atoms present at the lattice sites. •
- The atoms are arranged in different patterns, often in layers placed one above the other. •
- The atoms in a metal crystal are viewed to be held together by a metallic bond. •
- The valence electrons of the metal atoms are considered to be delocalized leaving positive • metal ions.
- The freed electrons move throughout the vacant spaces between the ions. The electrostatic • attractions between the metal ions and the electron cloud constitute the metallic bond.

Thus a metal crystal may be described as having positive ions at the lattice positions surrounded by mobile electrons throughout the crystal. The attractive force between ions and the electron cloud remains the same. The crystal, therefore, does not break.

م

A representation of a metallic crystal structure.

So far in our discussion of crystalline substances, we have assumed them to be **perfect**

crystals. A perfect crystal is one in which all the atoms or ions are lined up in a precise geometric pattern. But crystals are never actually perfect. The real crystals that we find in nature or prepare in the laboratory always contain imperfections in the formation of the crystal lattice. These crystal defects

The common crystal defects are: (a) Vacancy defect

(b) Interstitial defect

CRYSTAL DEFECTS

(c) Impurity defects

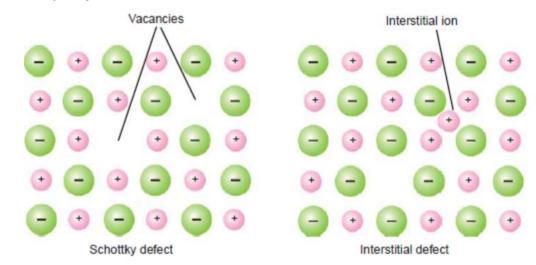
These defects pertaining to lattice sites or points are called **Point defects**.

can profoundly affect the physical and chemical properties of a solid.

Vacancy Defect

When a crystal site is rendered vacant by removal of a structural unit in the lattice, the defect is referred to as the vacancy defect. In an ionic crystal, a cation and anion may leave the lattice to cause two vacancies. Such a defect which involves a cation and an anion vacancy in the crystal lattice is called a Schottky defect. This defect is found in the crystals of sodium chloride and cesium chloride (CsCl).

Interstitial Defect


REVIEWED & APPROVED BY DESIGNATION DATE

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUN REV. NO DATE	ient no. D.	: DCG 013 : R0 : 05/04/2021
COLLEGE	DOCUMENT TITLE UNIT -II CHROMATOGRAPHY AND SOLID STATE	COPY PAGE	: 19 to 37	Edition : 1

Here, an ion leaves its regular site to occupy a position in the space between the lattice sites (interstitial position). This causes a defect known as Interstitial defect or Frenkel defect. As shown in Figure ordinarily the cation moves as it is smaller than the anion and can easily fit into the vacant spaces in the lattice. Thus in AqCI crystal, Aq+ ion occupies an interstitial position leaving a vacancy (or hole) at the original site.

Impurity Defect

These defects arise due to the corporation of foreign atoms or ions in regular lattice sites or interstitial sites. When foreign particles are substituted for normal lattice particles, it is called substitution impurity.

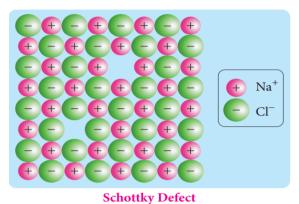
Two common types of defects in ionic crystals.

When foreign particles are trapped in vacant interstitial spaces, it is called **interstitial impurity.** Both types of impurities can have drastic effect on the properties of solids.

Stoichiometric defects in ionic solid:

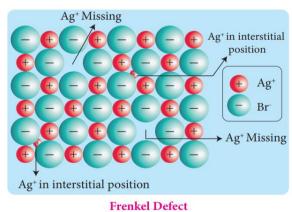
This defect is also called intrinsic (or) thermodynamic defect. In stoichiometric ionic crystals, a vacancy of one ion must always be associated with either by the absence of another oppositely charged ion (or) the presence of same charged ion in the interstitial position so as to maintain the electrical neutrality.

(a)Schottky defect:


Schottky defect arises due to the missing of equal number of cations and anions from the crystal lattice. This effect does not change the Stoichiometry of the crystal. Ionic solids in which the

(x86)

م


SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 013 : R0 : 05/04/2021
COLLEGE	DOCUMENT TITLE UNIT -II CHROMATOGRAPHY AND SOLID STATE	COPY : PAGE 19 to 37	Edition : 1

cation and anion are of almost of similar size show Schottky defect. Example: NaCl. Presence of large number of Schottky defects in a crystal, lowers its density.

(b) Frenkel defect:

Frenkel defect arises due to the dislocation of ions from its crystal lattice. The ion which is missing from the lattice point occupies an interstitial position. This defect is shown by ionic solids in which cation and anion differ in size. Unlike Schottky defect, this defect does not affect the density of the crystal. For example AgBr, in this case, small Ag+ ion leaves its normal site and occupies an interstitial position as shown in the figure.

CONDUCTORS

Those substances which allow electrical current to pass through them completely are known as conductors. Examples are metals, alloys and fused electrovalent compounds.

Applications of Conductors

Conductors are quite useful in many ways. They find use in many real-life applications. For example,

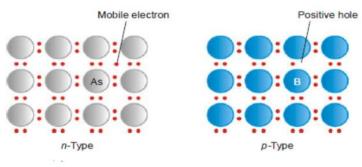
ï

Converte

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 013 : R0 : 05/04/2021
COLLEGE	DOCUMENT TITLE UNIT -II CHROMATOGRAPHY AND SOLID STATE	COPY : PAGE 19 to 37	Edition : 1

Mercury is a common material in thermometer to check the temperature of the body.

Aluminium finds its use in making foils to store food. It is also used in the production of fry pans to store heat quickly.


- Iron is a common material used in vehicle engine manufacturing to conduct heat.
- The plate of iron is made up of steel to absorb heat briskly.
- Conductors find their use in car radiators to eradicate heat away from the engine.

SEMICONDUCTORS

Typical metals are good conductors of electricity while elements like silicon and germanium are non conductors at ordinary temperature. However, they exhibit appreciable conductivity upon addition of impurities as arsenic and boron. The resulting materials are called **semiconductors** (poor conductors). The increase of conductivity upon addition of arsenic and boron can be easily explained.

In silicon and germanium crystals, each atom is covalently bonded to four neighbours so that all its four valence electrons are tied down. Thus in the pure state these elements are nonconductors. Suppose an atom of arsenic is introduced in place of silicon or germanium in the crystal lattice.

Arsenic has five valence electrons, four of which will be utilized in the formation of covalent bonds and the remaining electron is free to move through the lattice. This leads to enhanced conductivity.

Semiconductors derived from Silicon. n-Type semiconductor has As atom impurity and a mobile electron; p-Type conductor has B atom and positive hole.

Now let a boron atom be introduced in place of silicon atom in the crystal lattice. A boron atom has only three valence electrons. It can form only three of the four bonds required for a perfect lattice. Thus it is surrounded by seven electrons (one of Si) rather than eight. In this sense, there is produced an electron vacancy or a 'positive hole' in the lattice. Another electron from the bond of the adjacent Si

Doc

86)

ò

REVIEWED & APPROVED BY DESIGNATION DATE

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY AN	DOCUMENT NO. REV. NO. DATE	: DCG 013 : R0 : 05/04/2021
COLLEGE	COLLEGE DOCUMENT TITLE UNIT -II	COPY : PAGE 19 to 37	
	CHROMATOGRAPHY AND SOLID STATE		Edition : 1
Semiconduc are called n	te direction. Therefore the conductivity of th tors which exhibit conductivity due to the flo type semiconductors (<i>n</i> for negative). tors which exhibit conductivity due to the po	w of excess negative	
semicondu	ctors (<i>p</i> for positive).		
Applications of Semicon	uctors:		
	ness, low cost and controlled conduction of	electricity make them	ideal to be
	s in a wide range of components and device		

used for various purposes in a wide range of components and devices. Transistors, diodes, photo sensors, rectifiers microcontrollers, integrated chips, solar cells and much more are made up of semiconductors.

Uses of Semiconductors in Everyday life

- Temperature sensors are made with semiconductor devices. .
- They are used in 3D printing machines •
- Used in microchips and self-driving cars •
- Used in calculators, solar plates, computers and other electronic devices. •
- Transistor and MOSFET (metal-oxide-semiconductor field-effect transistor) used as a switch in Electrical Circuits are manufactured using the semiconductors.

Industrial Uses of Semiconductors:

The physical and chemical properties of semiconductors make them capable of designing technological wonders like microchips, transistors, LEDs, solar cells, etc. The microprocessor used for controlling the operation of space vehicles, trains, robots, etc is made up of transistors and other controlling devices which are manufactured by semiconductor materials.

Insulators

Insulators are the materials or substances which resist or don't allow the current to flow through them. In general, they are solid in nature. Also, insulators are finding use in a variety of systems. As they

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 013 : R0 : 05/04/2021
COLLEGE	DOCUMENT TITLE UNIT -II CHROMATOGRAPHY AND SOLID STATE	COPY : PAGE 19 to 37	Edition : 1

do not allow the flow of heat. The property which makes insulators different from conductors is its resistivity.

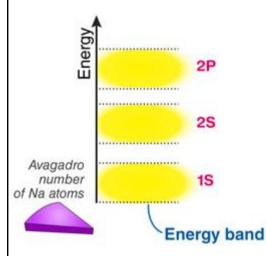
Wood, cloth, glass, mica, and guartz are some good examples of insulators. Also, insulators are protectors. They give protection against heat, sound and of course passage of electricity. Furthermore, insulators don't have any free electrons. It is the main reason why they don't conduct electricity.

Applications of Insulators

As insulators resist the flow of electron, they find worldwide applications. Some of the common uses include:

- Thermal insulators, disallow heat to move from one place to another. Hence, we use them in making thermoplastic bottles. They are also used in fireproofing ceilings and walls.
- Sound insulators help in controlling noise level, as they are good in absorbance of sound. Thus, we use them in buildings and conference halls to make them noise-free.
- Electrical insulators hinder the flow of electron or passage of current through them. So, we use them extensively in circuit boards and high-voltage systems. They are also used in coating electric wire and cables.

Band Theory of Solids


This theory explains the quantum state that an electron takes inside metal solid. Every molecule comprises of various discrete energy levels. The way electrons behave inside a molecule is well explained through this theory.

- In atoms, electrons are filled in respective energy orbits following Pauli's exclusion principle.
- In molecules, two atomic orbitals combine together to form a molecular orbit with two distinct • energy levels.
- In solids, 10²³ stacked up lines confined in a tiny space would look like a band. Thereby forming • energy continuum called energy bands.
- This theory helps to visualise the difference between conductor, semiconductor and an • insulator by plotting available energies for an electron in a material.

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 013 : R0 : 05/04/2021
COLLEGE	DOCUMENT TITLE UNIT -II CHROMATOGRAPHY AND SOLID STATE	COPY : PAGE 19 to 37	Edition : 1

Energy levels inside a solid made up of n-number of atoms

In general, if there is n-number of atoms, then there will be n discrete energy levels in each energy band. In such a system of n number of atoms, the molecular orbital's are called as energy bands. Single 1s orbital and 2s orbital can fit 2 electrons each. Thus, the total number of electrons a 1s and 2s energy band can fit is 2n. A single 2p level can fit 6 electrons so 2p energy band can fit is 6n electron so on and so forth.

The band theory of solids is different from the others because the atoms are arranged very close to each other such that the energy levels of the outermost orbital electrons are affected. But the energy level of the innermost electrons is not affected by the neighbouring atoms.

In band theory of solid, there are many energy bands but the following are the three most important energy bands in solids:

- 1. Valence band
- 2. Conduction band
- 3. Forbidden band

Valence band:

000

VPDF 7 x86)

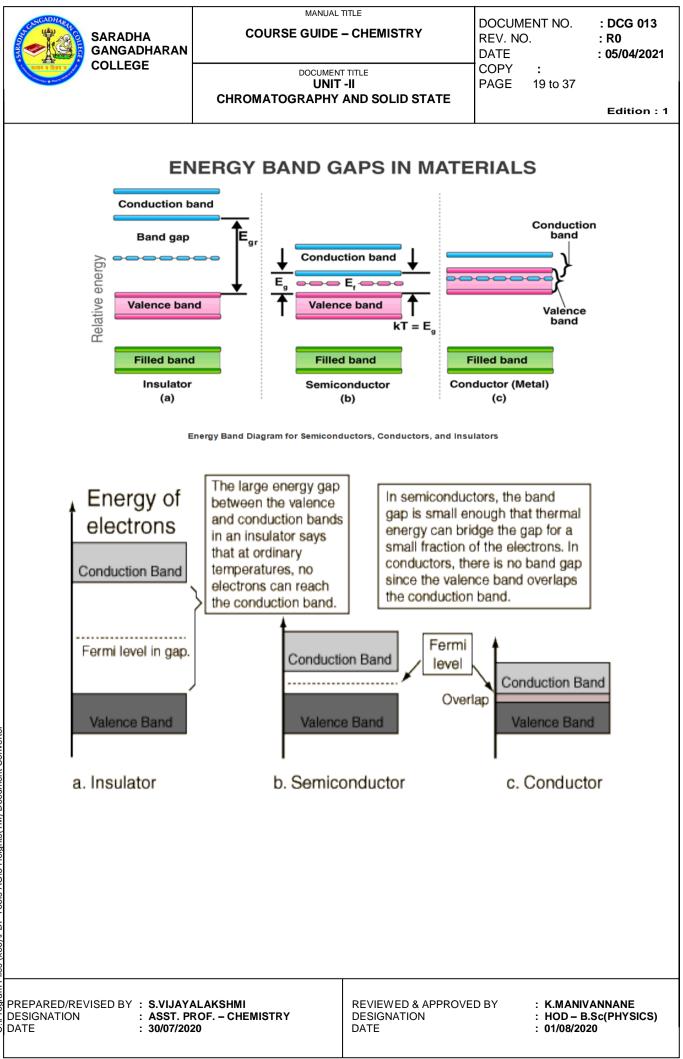
م

The energy band that consists of valence electrons energy levels is known as the valence band. The valence band is present below the conduction band and the electrons of this band are loosely bound to the nucleus of the atom.

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 013 : R0 : 05/04/2021
COLLEGE	DOCUMENT TITLE UNIT -II CHROMATOGRAPHY AND SOLID STATE	COPY : PAGE 19 to 37	Edition : 1

Conduction band:

The energy band that consists of free electrons energy levels is known as the conduction band. For electrons to be free, external energy must be applied such that the valence electrons get pushed to the conduction band and become free.

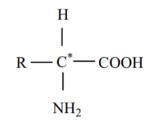

Forbidden band:

The energy gap between the valence band and the conduction band is known as the forbidden band which is also known as the forbidden gap. The electrical conductivity of a solid is determined from the forbidden gap and also the classification of the materials as conductors, semiconductors and insulator.

A useful way to visualize the difference between conductors, insulators and semiconductors is to plot the available energies for electrons in the materials. Instead of having discrete energies as in the case of free atoms, the available energy states form bands. Crucial to the conduction process is whether or not there are electrons in the conduction band. In insulators the electrons in the valence band are separated by a large gap from the conduction band, in conductors like metals the valence band overlaps the conduction band, and in semiconductors there is a small enough gap between the valence and conduction bands that thermal or other excitations can bridge the gap. With such a small gap, the presence of a small percentage of a doping material can increase conductivity dramatically.

An important parameter in the band theory is the Fermi level, the top of the available electron energy levels at low temperatures. The position of the Fermi level with the relation to the conduction band is a crucial factor in determining electrical properties.

REVIEWED & APPROVED BY DESIGNATION DATE

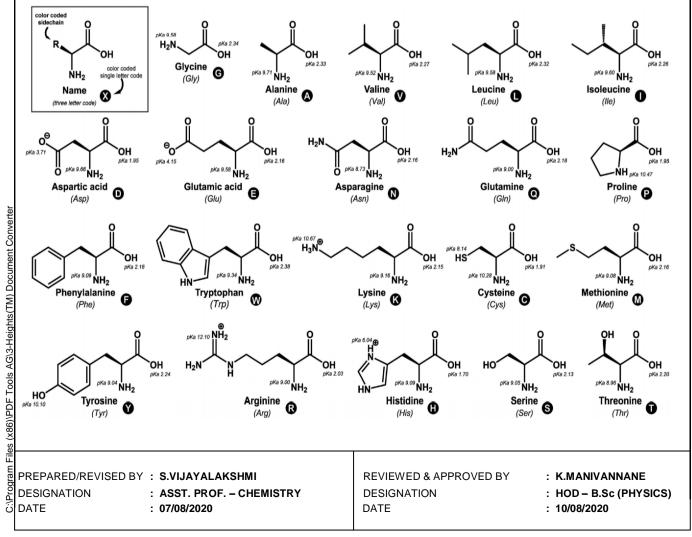

\Program Files (x86)\PDF Tools AG\3-Heights(TM) Document Converter

ċ

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 014 : R0 : 05/04/2021
COLLEGE	DOCUMENT TITLE UNIT -III	COPY PAGE 38 OF	: 62
	AMINO ACIDS		Edition : 1

Amino acids:

Amino acids are compounds which contain an amino group and a carboxylic acid group. The protein molecules are made up α -amino acids which can be represented by the following general formula.



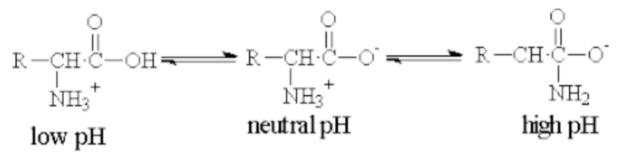
R group varies in structure, size, electric charge and influence the solubility of amino acid in water.

The key elements of amino acids are C, N, O, and H. Amino acids are basic structural building blocks of protein.

There are 20 α -amino acids commonly found in the protein molecules. Each amino acid is given a trivial name, a three letter code and a one letter code. In writing the amino acid sequence of a protein, generally either one letter or three letter codes are used.

AMINO ACIDS AND THEIR STRUCTURE

A CONCAL	SARADHA GANGADHARAN COLLEGE	MANUAL	– CHEMISTRY	DOCUMENT NO. REV. NO. DATE COPY	: DCG 014 : R0 : 05/04/2021
erella a	COLLECT	DOCUMEN UNIT		PAGE 38 OF	: 62
		AMINO	ACIDS		Edition : 7
Classifi	cation of amino acids				
I Classif	ication based on biologi	cal importance			
(i)	Essential amino acid: c	ertain amino acid that ca	nnot be synthesis by li	ving organism. Th	ey must be
	compulsorily included	in the diet. Eg.Valine, the	eronine etc.		
(ii)	Non-essential amino a	acid: Certain amino acid t	hat can be synthesised	by the cell . They	need not
	included in diet. Eg: Al	anine, Glycine etc.			
II Class	ification based on incor	poration in protein:			
(i)		d: It is used for synthesis	of protein Eg: Hydroxy	proline	
(ii)	-	o acid: It is not used for s			
()	U		, , , , ,		
III Clas	sification based on struc	ture of side chain:			
(i)	Aliphatic amino acid: T	hey are long chain molec	cule		
(ii)	Aromatic amino acid:	They contain benzene rin	g		
IV Clas	sification based on posit	ion of –NH2 group			
(i)	α-Amino acid				
(ii)	β-Amino acid				
(iii)	β-Amino propionic aci	b			
(iv)	γ- Amino acid				
V Class	ification based on react	ion in solution			
(i)	Neutral : Eg: Tryosine				
(ii)	Acidic : Eg: Asparagine				
(iii)	Basic : Eg: Histidine				
	-				
VI Class	ification based on Polar	ity of side chain:			
(i)	Hydrophobic : Alan				
(ii)	Hydrophilic : Glycin	е			
	ED/REVISED BY : S.VIJAY		REVIEWED & APPROVE		
DESIGNA DATE	: 07/08/202	ROF. – CHEMISTRY 20	DESIGNATION DATE	: HOD – : 10/08/2	B.Sc (PHYSICS)


SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 014 : R0 : 05/04/2021
COLLEGE	DOCUMENT TITLE UNIT -III	COPY PAGE 38 OI	: - 62
	AMINO ACIDS		Edition : 1

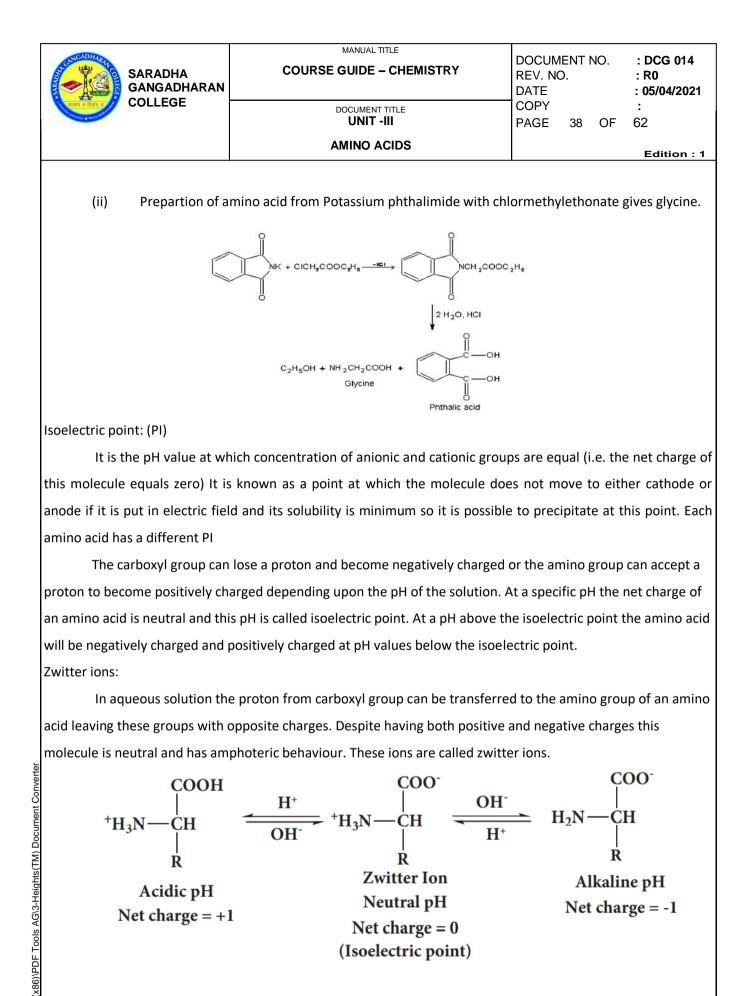
Preparation of amino acids:

Properties of amino acid:

Amino acids are colourless, water soluble crystalline solids. Since they have both carboxyl group and amino group their properties differ from regular amines and carboxylic acids.

1- Amphoteric Compounds: which mean they can act as acids and bases, due to presence of carboxyl group COOH that able to donate proton(H+), and convert to COO also presence of amino group NH2 which is enable to accept this proton(H+) and convert into NH3+

2. Iso electric point (PI) : It is the pH value at which concentration of anionic and cationic groups are equal (i.e. the net charge of this molecule equals zero) It is known as a point at which the molecule does not move to either cathode or anode if it is put in electric field and its solubility is minimum so it is possible to precipitate at this point. Each amino acid have a different PI


3-Rotate the polarized light Amino acids are able to rotate polarized light either to the left (livo) L- a.a or to the right (dextro) D- a.a , since they have an asymmetric C atom (a carbon atom linked to 4 different groups), except glycine which lacks asymmetric C atom (has 2 H+ on α -C).

Preparation of amino acids:

C:\Program Files (x86)\PDF Tools AG\3-Heights(TM) Document Conve

(i) An α -chloro or α -bromo acid is subjected to direct ammonolysis with a large excess of concentrated aqueous ammonia. For example:

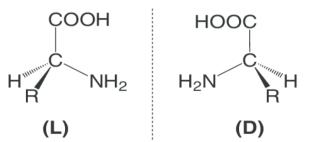
CH ₃ CH ₂	$\begin{array}{ccc} \text{COOH} & \xrightarrow{\text{Br}_2, P} & \text{CH}_3\text{CHC} \\ \Rightarrow \text{ acid} & & & & \\ & & & & \\ & & & & \\ & & & & $		I ₃ CHCOO ⁻ NH ₃ ⁺ Alanine
PREPARED/REVISED BY	: S.VIJAYALAKSHMI	REVIEWED & APPROVED BY	: K.MANIVANNANE
DESIGNATION	: ASST. PROF. – CHEMISTRY	DESIGNATION	: HOD – B.Sc (PHYSICS)
DATE	: 07/08/2020	DATE	: 10/08/2020

PREPARED/REVISED BY: S.VIJAYALAKSHMIDESIGNATION: ASST. PROF. - CHEMISTRYDATE: 07/08/2020

م

ċ

: K.MANIVANNANE : HOD – B.Sc (PHYSICS) : 10/08/2020


SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 014 : R0 : 05/04/2021
COLLEGE	DOCUMENT TITLE UNIT -III	COPY PAGE 38 OF	: 62
	AMINO ACIDS		Edition : 1

Stereochemistry of Amino acids

All amino acids are optically active (except Glycine)

- All amino acids (except Glycine) have one asymmetrical carbon or chiral carbon, to which four different groups are attached (carboxyl group, amino group, hydrogen atom, R group)
- > The mirror images of a molecule of amino acid are non-superimposable to each other.
- > Amino acids do not have plane of symmetry.
- > All amino acids rotate the plane polarized light.
- These are nonsuperimposable mirror image of each other and know as Enantiomer of each other.

If the carboxyl group is written at the top, theD form refers to the isomer having –NH2 at on the right; the L form refers to the amino acid having –NH2 group on the left.

TESTS ON AMINO ACIDS:

I Ninhydrin test:

- 1. Make 1 ml of standard protein solution in one test tube and 1 ml of the test sample in another dry test tube.
- 2. Add a few drops of ninhydrin reagent to both the test tubes.
- 3. Place the test tubes in the water bath for 5 minutes and then allow cooling to room temperature.
- 4. The presence of a purple-colored complex in the tube represents a positive result and indicates the presence of amino acid in the sample.

II Lead sulphide test:

Converte

(x86)\PDF Tools AG\3-Heights(TM) Doc

ŋ

- 1. In a test tube, 2 ml of the amino acid solution is taken. To this, 2 ml of NaOH is added, and the solution is boiled for a minute.
- 2. Once the test tube cools down, a few drops of lead acetate are added to the solution.
- 3. The test tube is then observed for the formation of a precipitate.

or cy III Millon's 1. Abou 2. To th 2 mir 3. The t 4. The f conta IV Xanthop 1. Abou acid i 2. The t preci 3. Then 4. The a prese V Isatin tes 1. A dro it in a 2. Now,	SARADHA GANGADHARAN COLLEGE		- CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 014 : R0 : 05/04/2021
or cy III Millon's 1. Abou 2. To th 2 mir 3. The t 4. The f conta IV Xanthop 1. Abou acid i 2. The t preci 3. Then 4. The a prese V Isatin tes 1. A dro it in a 2. Now,		DOCUMENT UNIT		COPY PAGE 38 OF	: 62
or cy III Millon's 1. Abou 2. To th 2 mir 3. The t 4. The f conta IV Xanthop 1. Abou acid i 2. The t preci 3. Then 4. The a prese V Isatin tes 1. A dro it in a 2. Now,		AMINO A	CIDS		Edition : 1
or cy III Millon's 1. Abou 2. To th 2 mir 3. The t 4. The f conta IV Xanthop 1. Abou acid i 2. The t preci 3. Then 4. The a prese V Isatin tes 1. A dro it in a 2. Now,			I		Letter.
 III Millon's 1. Abou 2. To th 2 mir 3. The t 4. The f conta IV Xanthop 1. Abou acid i 2. The t preci 3. Then 4. The a prese V Isatin tes 1. A dro it in a 2. Now, 	e formation of black pr	recipitate at the bottom c	of the test tube. This ind	icates the presen	ce of cysteine
 About To the 2 ministry The time The time The time The time The time About About About The time The time<td>cystine in the solution.</td><td></td><td></td><td></td><td></td>	cystine in the solution.				
 To th 2 min The t The f Conta The f Conta IV Xanthop Abou acid i The t preci The f Th	ı's Test				
2 mir 3. The t 4. The f conta IV Xanthop 1. Abou acid i 2. The t preci 3. Then 4. The a prese V Isatin tes 1. A dro it in a 2. Now,	out 2 ml of the sample	e solution or the 1% tyros	ine solution is taken in	a test tube.	
 The t The f Conta V Xanthop Abou acid i The t preci Then The a prese V Isatin tes A dro A dro it in a Now, 	this, about 2 ml of Mil	lon's reagent is added. Th	ne test tubes are then ke	ept in the water b	ath for about
 4. The f conta IV Xanthop 1. Abou acid i 2. The t preci 3. Then 4. The a prese V Isatin tes 1. A dro it in a 2. Now, repea 3. The p 4. The f Pro amino acid Classificatio 	ninutes if red colored p	precipitate is not observe	d immediately.		
conta IV Xanthop 1. Abou acid i 2. The t preci 3. Then 4. The a prese V Isatin tes 1. A dro it in a 2. Now,	e tubes are then obser	ved for the formation of	the colored precipitate.		
 IV Xanthop 1. Abou acid i 2. The t preci 3. Then 4. The a prese V Isatin tes 1. A dro it in a 2. Now, 	e formation of a red or	pink colored precipitate.	This indicates the pres	ence of tyrosine c	or tyrosine
 Abou acid i The t preci Then Then The a prese V Isatin tes A dro it in a Now, 	ntaining protein.				
acid i 2. The t preci 3. Then 4. The a prese V Isatin tes 1. A dro it in a 2. Now,	oproteic Test:				
 The t preci Then The a prese The a prese The a prese The a prese 	out 1 ml of the sample	solution is taken in a tes	t tube. To this, the same	e amount of conc	entrated nitri
preci 3. Then 4. The a prese V Isatin tes 1. A dro it in a 2. Now,	d is added.				
 Then The a prese V Isatin tes A dro it in a Now, 	e test tube is allowed t	o cool down to room tem	perature. If the sample	is a protein solut	ion, a white
 The a preset V Isatin tes A dro it in a Now, 	cipitate might develo	p due to the denaturatior	of proteins.		
prese V Isatin tes 1. A dro it in a 2. Now,	en, 1 ml of 40% NaOH	solution is added to the t	est tube and observed f	or color change.	
V Isatin tes 1. A dro it in a 2. Now,	e appearance of a dark	vellow or orange-colore	d solution represents a	positive test. This	indicates the
 A dro it in a Now, 	esence of aromatic gro	ups in the proteins and a	mino acids.		
it in a 2. Now,	est:				
2. Now,	Irop of the sample (im	ino acid) solution is addee	d to a Whatman No. 1 fi	Iter paper and dri	ied by placing
	n a hot air oven.				
repea 3. The p 4. The f Pro amino acid Classificatic Pro	w, a drop of isatin rea	gent is added to the dried	l spot, and the process of	of drying in the ho	ot air oven is
3. The p 4. The f Pro amino acid Classificatic Pro	peated.				
4. The f Pro amino acid Classificatic Pro	e paper is then observ	ed for the formation of a	blue-colored spot.		
Pro amino acid Classificatic Pro	e formation of a blue-o	colored spot on the filter	paper. This indicates the	e presence of imir	no acids.
Pro amino acid Classificatic Pro		PROT	EINS		
amino acid Classificatic Pro	roteins are a macromo	plecule composed of one	or more polypeptide ch	ains possessing a	characteristi
	id sequence. It is a pol [,]	ymer of amino acids.			
Pro	tion of Proteins:				
	roteins are classified in	n two ways.			
PREPARED/R	D/REVISED BY : S.VIJAYA	ALAKSHMI	REVIEWED & APPROVED	BY : K.MANI	/ANNANE

: HOD · B.SC (PHYSICS) : 10/08/2020

- (i) On the basis of their solubility or shape
- (ii) On the basis of increasing complexity of structure

I Classification of proteins on the basis of solubility or shape:

Proteins are classified in tow groups based on their solubility and shape. They are globular proteins and fibrous proteins.

- Globular proteins: Globular proteins are spherical in shape and are soluble in water. They are highly branched. The polypeptide chain are cross linked by the usual peptide bonds involving the second amino group of one amino acid and the second carboxyl group of the second amino acid. The globular protein molecules may also be tightly folded into spherical or globular shapes. The globular proteins include (a) Enzymes (b) Protein hormones (c) Antibodies (d) Blood proteins such as haemoglobins, myoglobin, immunoglobin and insulin.
- 2. Fibrous Proteins: Fibrous are insoluble in water. These are highly resistant to digestion by proteolyting enzymes. They are unbranched and are in the form of fibres. They are linear molecule. The long linear protein chains are held together by intermolecular hydrogen bonds. They are not folded into globular molecules. They serve as structural proteins.

II Classification of proteins based on the increasing complexity of structure:

On the basis of increasing complexity of structure, proteins are classified into three groups. They are:

- (a) Simple proteins
- (b) Conjugated proteins
- (c) Derived proteins

(A)SIMPLE PROTEINS:

The proteins which yield amino acids or their derivatives on hydrolysis are caleed simple proteins. Simple proteins are further classified into 7 sub class on the basis of the decreasing solubility.

(i) Albumins:

Albumins are simple proteins soluble in water . they are coagulated by heat. They are precipitated by saturated ammonium sulphate salt solution. They are deficient in glycine. Eg. Plasma allumin, serum allumin of egg, ovalbumin of egg, white lactalbumin of milk.

(ii) Globulins:

: K.MANIVANNANE : HOD – B.Sc (PHYSICS) : 10/08/2020

م

S

Globulins are insoluble in water, but soluble in dilute solutions of neutral salts. They are coagulated by heat. They are precipitated by lower concentration of salts such as ammonium sulphate or sodium sulphate. Globulins are precipitated by saturated NaCl solution. They contain glycine. Eg. Plasma globulin, serum globulin, ovaglobulin in egg white, mosin in muscles, and edestin in hemp seed.

- (iii) Gluteline: Gluteline are insoluble in water and dilute solutions of neutral salts. But they are soluble in acids and bases. They are acid. Eg. Glutenin in whet oryzenin in rice.
- (iv) Prolamines: Prolamines are soluble in 70 to 80 % ethyl alcohol. But they are insoluble in waer, absolute alcohol and other neutral solvents. They are not coagulated by heat. They contain large amount of protein. They are deficient of lysine. Eg. Zein from maize, gliadin from wheat, ordain from barley and secalin from rye.
- Albuminiods: these proteins are insoluble in water, dilute solutions of neutral salts, acid bases and
 60 to 80 % ethyl alcohol. But they are soluble in long boiling concentrated acid solutions. Eg.Keratin
 in hair, feathers, nails, etc.
- (vi) Histones: Histones are simple proteins soluble in water and dilute acids, but insoluble in ammonia.
 Theynare not coagulated by heat. Histones are rich in basic amino acids like histidine and arginine but deficient in tryptophan and contain little cystine or methonine. Histones are combined with nucleic acids and haemoglobin.
- (vii) Protamines: Protamines are soluble in water and ammonium hydroxide. They are not coagulated by hest. They are more basic than histones. They contain large quantities of arginine. Tyrosine and tryptophan are absent. Eg.Salamine etc.

(B) CONJUGATED PROTEINS:

g

(x86)\PDF Tools AG\3-Heights(TM)

م

Conjugated proteins are proteins united with non-protein substances. The non-protein substance linked to proteins is referred to as prosthetic group. So conjugated proteins, on hydrolysis, yield non-proteon substances in addition to amino acids. The conjugate proteins are further classified into 5 sub types.

 (i) Glycoproteins or Mucoproteins: Glycoproteins contains carbohydrates as the prosthetic group. On hydrolysis they yield amino sugars. Eg. Mucin in saliva, egg, albumin etc.

CONCADHAR SCHOOL DA	SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 014 : R0 : 05/04/2021
सत्याय च हिताय च		DOCUMENT TITLE UNIT -III	COPY PAGE 38 OF	: 62
		AMINO ACIDS		Edition : ²
(ii)		osphoproteins contain phosphoric acid th hydroxyl group of protein by an ester line		
(iii)		ins phospholipids cholesterol as the pros	thetic group, Eg. Lipop	roteins of
	blood serum.			
(iv)		e contain nucleic acid as the prosthetic gr	oup. Eg. Nuclein, nucle	ohistine etc.
(iv) (v)	Nucleoproteins: These	e contain nucleic acid as the prosthetic gr omo proteins are coloured proteins. Thes		
	Nucleoproteins: These Chromo proteins: Chr		se are simple proteins l	inked to a
(v)	Nucleoproteins: These Chromo proteins: Chr metallic prosthetic gro	omo proteins are coloured proteins. The	se are simple proteins l	inked to a

Proteans: proteans are denatured proteins. They are the fibre products produced by the action of

acids, enzymes or water proteins. They are insoluble in water. Eg. a) edestan from edestin b) fibrin

Coagulated proteins: these are insoluble protein products produced by the action of heat or alcohol

Secondary derived proteins are the products of proteins in which definite hydrolysis has taken place.

The molecules are smaller than those of the original protein. They may be mainly of three types, namely

Proteases: It is insoluble in water. They are not coagulated by heat. They are precipitated by

Metaproteins: These are derived by the further action of acid or alkali on proteins. These are

: K.MANIVANNANE : HOD – B.Sc (PHYSICS) : 10/08/2020

(x86)\PDF Tools AG\3-Heights(TM)

ŋ

proteins.

(i)

(ii)

(iii)

I PRIMARY DERIVED PROTEINS:

II SECONDARY DERIVED PROTEINS:

from fibrinogen c) myosin derived from myosin.

insoluble in water, but soluble in dilute acid or alkali.

saturating their solutions with ammonium sulphate.

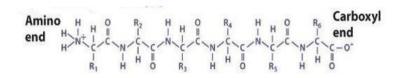
on protein coagulated egg white is an example of this type.

PREPARED/REVISED BY : S.VIJAYALAKSHMI DESIGNATION : ASST. PROF. – CHEMISTRY DATE : 07/08/2020

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 014 : R0 : 05/04/2021
COLLEGE	DOCUMENT TITLE UNIT -III	COPY PAGE 38 OF	: 62
	AMINO ACIDS		Edition : 1

- (ii) Peptones: it is soluble in water. They are not coagulated by heat. They are also not precipitated by saturating their solution with ammonium sulphate.
- (iii) Polypeptides: These are the derivatives of proteins containing amino acids units.

STRUCTURE OF PROTEINS:


Different structural organisation for proteins. They are.

- 1. Primary structure
- 2. Secondary structure
- 3. Tertiary structure
- 4. Quaternary structure

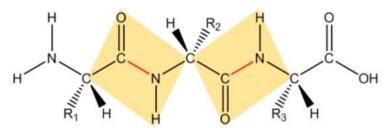
I PRIMARY STRUCUTURE:

The primary structure of protein is defined as the linear sequence amino acid residues up its polypeptide chain. The protein nor formed of one or more polypeptide chains. The amino acids arranged in specific sequence in the polypeptide chain. The peptide bond is a repeating unit. Two amino acids give dipeptide, three amino acids give a tripeptide, four amino acid gives tetra-peptide and so on. More than 10 amino acids form a polypeptide. Polypeptide has a) N-terminal b) C-terminal .The primary structure has salient features:

- 1. Primary structure refers to the linear sequence of amino residues.
- 2. The proteins are linear and unfolded.
- 3. The protein is formed of one or more polypeptide chains.
- 4. The amino acid residues are linked by repeating peptide bond
- 5. The adjacent polypeptide chains are linked by disulphide bond.
- Most of the structural proteins which are in the form of for exhibit primary structure. Eg: Fibrous of silk.

[Figure 1 : The sequence of a polypeptide chain from an antibody, with the N- and the C-termininal]

	PREPARED/REVISED BY	:	S.VIJAYALAKSHMI
Pro(DESIGNATION	:	ASST. PROF. – CHEMISTRY
3	DATE	:	07/08/2020


: K.MANIVANNANE

- : HOD B.Sc (PHYSICS)
- : 10/08/2020

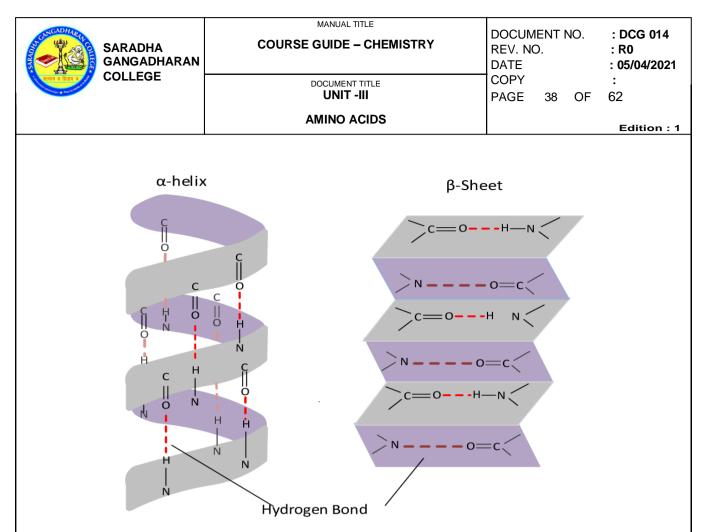
SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 014 : R0 : 05/04/2021
COLLEGE	DOCUMENT TITLE UNIT -III	COPY PAGE 38 OF	: 62
	AMINO ACIDS		Edition : 1

II SECONDARY STRUCUTRE:

The peptide bond between two residues is a single bond, but it is said to have a semi double-bond character. This means that it is particularly rigid for a single bond, forming a planar structure called the amide plane, as shown in Figure 2.

[Figure 2 | The amide planes of a tripeptide. Each peptide bond (red) forms a planar structure, the amide plane (yellow), due to is semi double-bond character. R1-3: side chains.]

The angles between subsequent amide planes in a polypeptide are called torsion angles. They can only adopt certain values, and those values impose certain conformations (or folds) on the backbone.


 \Rightarrow The secondary structure of a protein is the local fold of the protein backbone.

Some of those local folds form precise, regular structures, often stabilised by hydrogen bonds. The two most common examples of secondary structure elements are α -helices and β -sheets.

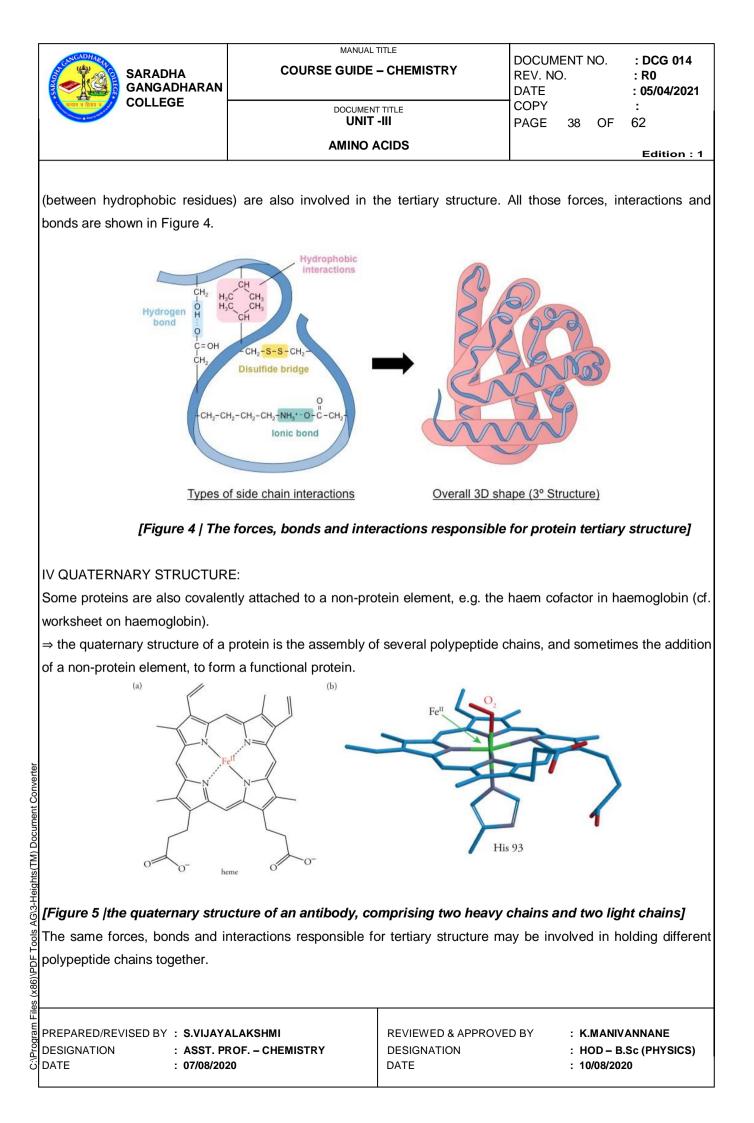
In an α -helix, the polypeptide chain forms a right-handed helical structure with 3.6 residues per turn (Figure 3a). The helix is stabilised by hydrogen bonds between the backbone N–H of each residue and the backbone C=O of the amino acid four residues earlier in the sequence. The core of the helix is tightly packed and all the side chains project outward.

REVIEWED & APPROVED BY DESIGNATION DATE : K.MANIVANNANE : HOD – B.Sc (PHYSICS)

: 10/08/2020

[Figure 3a | Example of an α-helix containing alanine residues only. Hydrogen bonds (orange) between backbone atoms four residues apart stabilise the α -helix. Figure 3b | Example of a β -sheet. All side chain atoms are hidden for simplicity. Hydrogen bonds between backbone atoms from adjacent β-strands stabilise the β-sheet.]

β-sheets are the other most common type of secondary structure element, shown in Figure 3b. They are also stabilised by hydrogen bonds, but between different chains, whereas in an α-helix, the hydrogen bonds are all within the same helix. Similarly to α -helices however, the hydrogen bonds stabilising β -sheets are between backbone N–H and C=O groups.


III TERTIARY STRUCTURE

 \Rightarrow The tertiary structure of a protein is its overall 3D arrangement: the folding of secondary structure elements and the position of side chains.

The hydrophobic effect is responsible for most of the tertiary structure of a protein: it is energetically favourable for the protein to fold and bury its hydrophobic residues within its core, away from the surrounding water. Other bonds and interactions also help the protein fold into the correct tertiary structure. Disulphide bonds are covalent bonds between the sulphur atoms of two cysteine residues. Salt bridges are electrostatic interactions between a negatively charged side chain and a positively charged one. Hydrogen bonds and van der Waals interactions

ò

: K.MANIVANNANE : HOD - B.Sc (PHYSICS) : 10/08/2020

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 014 : R0 : 05/04/2021
COLLEGE	DOCUMENT TITLE UNIT -III	COPY PAGE 38 OF	: 62
	AMINO ACIDS		Edition : 1

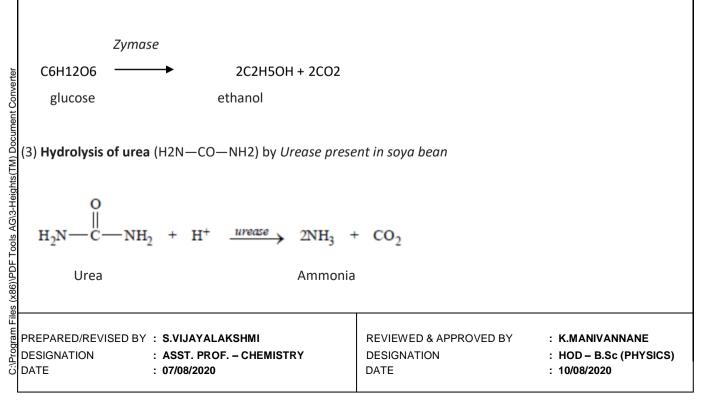
ENZYME CATALYSIS

Numerous organic reactions are taking place in the body of animals and plants to maintain the life process. These reactions being slow remarkably catalysed by the organic compounds known as **Enzymes**. All enzymes have been found to be complex protein molecules. Thus : Enzymes are protein molecules which act as catalysts to speed up organic reactions in living cells. **The catalysis brought about by enzymes is known as Enzyme Catalysis.**

Each enzyme is produced in a particular living cell to catalyse a reaction occurring in that cell. Many enzymes have been identified and obtained in pure crystalline state from the cells to which they belong. However the first enzyme as prepared by synthesis in the laboratory in 1969.

Examples of Enzyme Catalysis

Some common examples of the biochemical reactions catalysed by enzymes are :


(1)Inversion of cane sugar (C12H22O11) by Invertase present in yeast,

Invertase

C12H22O11 + H2O C6H12O6 + C6H12O6

Glucose fructose

(2) **Conversion of glucose into ethanol** by *Zymase present in yeast,*

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY		DOCUMENT NO. REV. NO. DATE		: DCG 014 : R0 : 05/04/2021
COLLEGE	DOCUMENT TITLE UNIT -III	COPY PAGE	38	OF	: 62
	AMINO ACIDS				Edition: 1

MECHANISM OF ENZYME CATALYSIS

The long chains of the enzyme (protein) molecules are coiled on each other to make a rigid colloidal particle with cavities on its surface. These cavities which are of characteristic shape and abound in active groups (NH2, COOH, SH, OH)] are termed **Active centres.** The molecules of substrate which have complementary shape, fit into these cavities just as key fits into a lock (**Lock-and- Key theory**). By virtue of the presence of active groups, the enzyme forms an activated complex with the substrate which at once decomposes to yield the products. Thus the substrate molecules enter the cavities, forms complex and reacts, and at once the products get out of the cavities.

Michaelis and Menten (1913) proposed the following mechanism for enzyme catalysis (Fig. 6).

 $\begin{array}{ccc} E+S & \longrightarrow & ES & \longrightarrow & P+E \\ & & & \\ & & \\ & & \\ & & \\ \end{array}$

where E = enzyme; S = substrate (reactant); ES = activated complex; P = products.

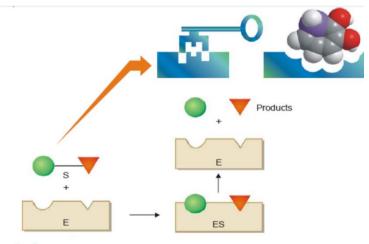


Figure:6 Illustration of the lock-and-key model of enzyme catalysis.

CHARACTERISTICS OF ENZYME CATALYSIS

80

(36)\PDF 7

ò

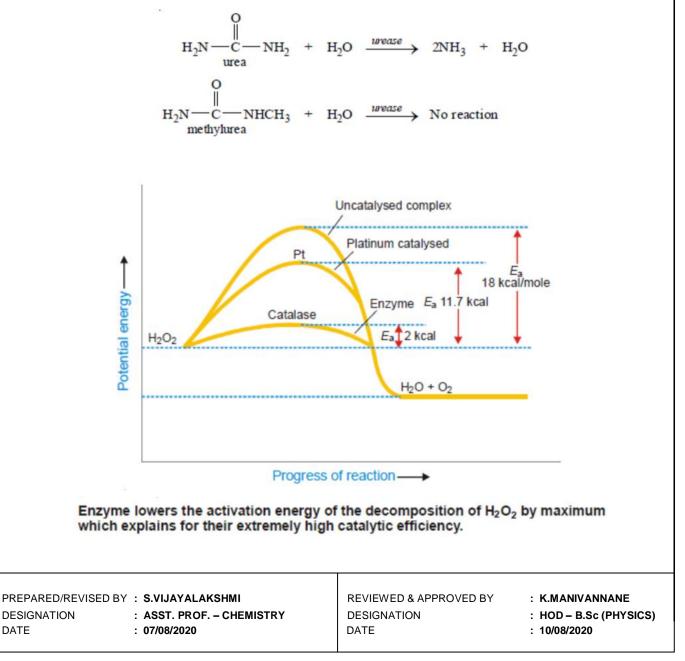
In general, enzyme behave like inorganic heterogeneous catalysts. However, they are unique in their efficiency and high degree of specificity. Some more important features of enzyme catalysis are listed below.

(1) Enzymes are the most efficient catalysts known

The enzyme catalysed reactions proceed at fantastic high rates in comparison to those catalysed by inorganic substances. Thus one molecule of an enzyme may transform one million molecules of the substrate (reactant) per minute.

: 10/08/2020

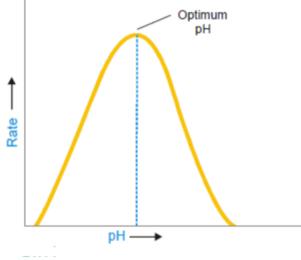
SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 014 : R0 : 05/04/2021
COLLEGE	DOCUMENT TITLE UNIT -III	COPY PAGE 38 OF	: 62
	AMINO ACIDS		Edition : 1


Like inorganic catalysts, enzymes function by lowering the activation energy or a reaction. For example, the activation energy of the decomposition of hydrogen peroxide,

$$2H_2O_2 \longrightarrow 2H_2O + O_2$$

without a catalyst is 18 kcal/mole. With colloidal platinum (inorganic catalyst), the activation energy is lowered by 11.7 kcal/mole. The enzyme *catalase* lowers the activation energy of the same reaction to less than 2 kcal/mole.

(2) Enzyme catalysis is marked by absolute specificity


An enzyme as a rule catalyses just one reaction with a particular substance. For example, *urease* (an enzyme derived from soya bean) catalyses the hydrolysis of urea and no other amide, not even methylurea.

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUM REV. NO DATE		NO.	: DCG 014 : R0 : 05/04/2021
COLLEGE	DOCUMENT TITLE UNIT -III	COPY PAGE	38	OF	: 62
	AMINO ACIDS				Edition:1

(3) The rate of enzyme catalyzed reactions is maximum at the optimum temperature

The rate of an enzyme catalyzed reaction is increased with the rise of temperature but up to a certain point. Thereafter the enzyme is denatured as its protein structure is gradually destroyed. Thus the rate of reaction drops and eventually becomes zero when the enzyme is completely destroyed. The rate of an enzyme reaction with raising of temperature gives a bell-shaped curve. The temperature at which the reaction rate is maximum is called the **optimum temperature**.

The variation of rate of an enzyme catalysed reaction with increase of pH.

(4) Rate of enzyme catalyzed reactions is maximum at the optimum pH

The rate of an enzyme catalyzed reaction varies with pH of the system. The rate passes through a maximum at a particular pH, known as the **optimum pH.** The enzyme activity is lower at other values of pH. Thus many enzymes of the body function best at pH of about 7.4, the pH of the blood and body fluids.

(5) Enzymes are markedly inhibited or poisoned

The catalytic activity of an enzyme is often reduced (*inhibited*) or completely destroyed (poisoned) by addition of other substances. These inhibitors or poisons interact with the active functional groups on the enzyme surface. For example, heavy metal ions (Ag+, Hg2+) react with the –SH groups of the enzyme and poison it.

 $Enz - SH + Ag^+ \xrightarrow{poisoning} Enz - S - Ag + H^+$

PREPARED/REVISED BY: S.VIJAYALAKSHMIDESIGNATION: ASST. PROF. - CHEMISTRYDATE: 07/08/2020

Heinhts

x86)\PDF Tools AG\3-

م

REVIEWED & APPROVED BY DESIGNATION DATE

: K.MANIVANNANE : HOD – B.Sc (PHYSICS) : 10/08/2020

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUM REV. NO DATE		NO.	: DCG 014 : R0 : 05/04/2021
COLLEGE	DOCUMENT TITLE UNIT -III	COPY PAGE	38	OF	: 62
	AMINO ACIDS				Edition: 1

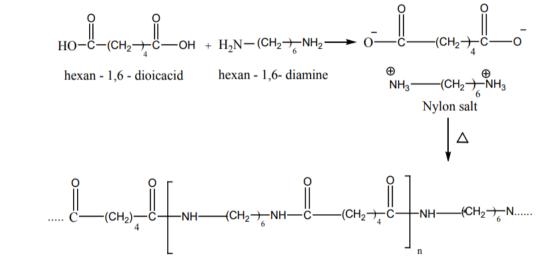
(6) Catalytic activity of enzymes is greatly enhanced by the presence of Activators or Coenzymes

Activators are metal ions Na+, Mn2+, CO2+, Cu2+, etc., which get weakly bonded to enzyme molecules and promote their catalytic action. Thus it has been found that the addition of sodium chloride (Na+) makes *amylase* catalytically very active.

Often, a small nonprotein (*vitamin*) termed a **coenzyme** when present along with an enzyme, promotes the catalytic activity of the latter.

ċ

: K.MANIVANNANE


: HOD – B.Sc (PHYSICS) : 10/08/2020

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 015 : R0 : 18/08/2020
COLLEGE	DOCUMENT TITLE UNIT -IV	COPY PAGE 63 OF	: 77
	POLYMERS		Edition: 1

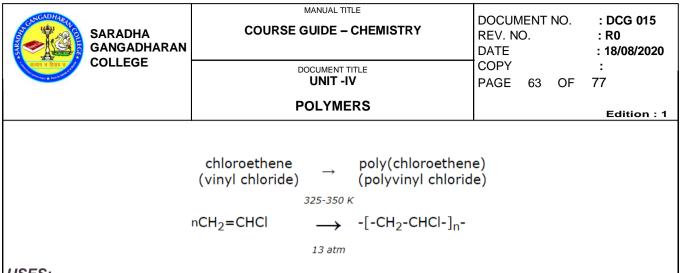
POLYMERS

Macromolecules, both natural and man-made, owe their great size to the fact that they are polymers (Greek: many parts); that is, each one is made up of a great many simpler units identical to each other or at least chemically similar joined together in a regular way. They are formed by a process we touched on earlier: polymerization, the joining together of many small molecules to form very large molecules. The simple compounds from which polymers are made are called monomers. Preparation of nylon (6, **6**):

Nylon – 6, 6 can be prepared by mixing equimolar adipic acid and hexamethylene – diamine to form nylon salts which on heating eliminate a water molecule to form amide bonds.

Poly (hexamethyleneadipamide) Nylon 6,6

USES:


- 1. It is used in making the bristles of brushes.
- 2. It is also used to make Fabrics and carpets.

PREPARATION OF VINYL POLYMERIZATION:

For the preparation of polyvinylchloride, the monomer used is vinyl chloride (CH2=CHCI). Polyvinyl chloride is prepared by addition polymerisation in which monomers are added in a chain. Vinyl chloride is treated with peracid under pressure and we get polyvinyl chloride (PVC).

: K.MANIVANNANE : HOD – B.Sc (PHYSICS)

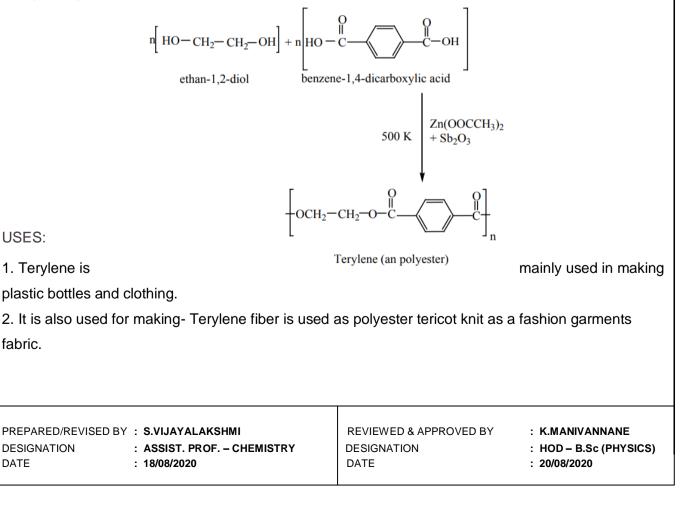
: 20/08/2020

<u>USES:</u>

Converte

x86)\PDF 7

ò


1. It is used for sewerage pipes and other pipe applications where cost or vulnerability to corrosion limit the use of metal.

2. With the addition of impact modifiers and stabilizers, it has become a popular material for window and door frames.

3. By adding plasticizers, it can become flexible enough to be used in cabling applications as a wire insulator.

PREPARATION OF TERYLENE (DACRON):

The monomers are ethylene glycol and terepathalic acid (or) dimethylterephthalate. When these monomers are mixed and heated at 500K in the presence of zinc acetate and antimony trioxide catalyst, terylene is formed.

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUN REV. N DATE		NO.	: DCG 015 : R0 : 18/08/2020
COLLEGE	DOCUMENT TITLE UNIT -IV	COPY PAGE	63	OF	: 77
	POLYMERS				Edition : 1

3. Used for the laundry usage as a automatic clothing vacuum packaging machine.

4. It is used to make non woven needle punched carpet particularly for the exhibition use.

PREPARATION OF POLYTHENE:

Polythene is an addition polymer of ethene. There are two types of polyethylene

i) HDPE (High Density Polyethylene) ii) LDPE (Low Density polyethylene).

LDPE : It is formed by heating ethene at 200 to 300 °C under oxygen as a catalyst. The reaction follows free radical mechanism. The peroxides formed from oxygen acts as a free radical initiator.

n CH₂ = CH₂ $\xrightarrow{200^{\circ} - 300^{\circ}C}$ $\xrightarrow{}$ (-CH₂-CH₂) $\xrightarrow{}$ n ethene Polythene

HDPE: The polymerization of ethylene is carried out at 373K and 6to7 atm pressure using Zeiglar – Natta catalyst [TiCl₄ + ($C_2 H_5$)₃AI] HDPE has high density and melting point .

USES:

AG\3-Heights(TM) Document

(x86)\PDF Tools

Files (

- 1. It is used to make bottles, pipe etc..,
- 2. It is used as insulation for cables, making toys etc

NATURAL AND SYNTHETIC RUBBERS:

Rubber is a naturally occurring polymer. It is obtained from the latex that excludes from cuts in the bark of rubber tree (Ficus elastic). The monomer unit of natural rubber is cis- isoprene (2-methyl buta-1,3-diene). Thousands of isoprene units are linearly linked together in natural rubber. Natural rubber is not so strong or elastic. The properties of natural rubber can be modified by the process called vulcanization.

cispolyisoprene

Vulcanization: Cross linking of Rubber

gram	PREPARED/REVISED BY DESIGNATION DATE	:	S.VIJAYALAKSHMI
\Pro(DESIGNATION	:	ASSIST. PROF. – CHEMISTRY
ö	DATE	:	18/08/2020

REVIEWED & APPROVED BY DESIGNATION DATE

: K.MANIVANNANE : HOD – B.Sc (PHYSICS)

: 20/08/2020

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 015 : R0 : 18/08/2020
COLLEGE	DOCUMENT TITLE UNIT -IV	COPY PAGE 63 OF	: 77
	POLYMERS		Edition: 1

Natural rubber is mixed with 3-5% sulphur and heated at 100-150°C causes cross linking of the cis-1, 4-polyisoprene chains through disulphide (-S-S-) bonds. The physical properties of rubber can be altered by controlling the amount of sulphur that is used for vulcanization. In sulphur rubber, made with about 1 to 3% sulphur is soft and stretchy. When 3 to 10% sulphur is used the resultant rubber is somewhat harder but flexible.

SYNTHETIC RUBBER:

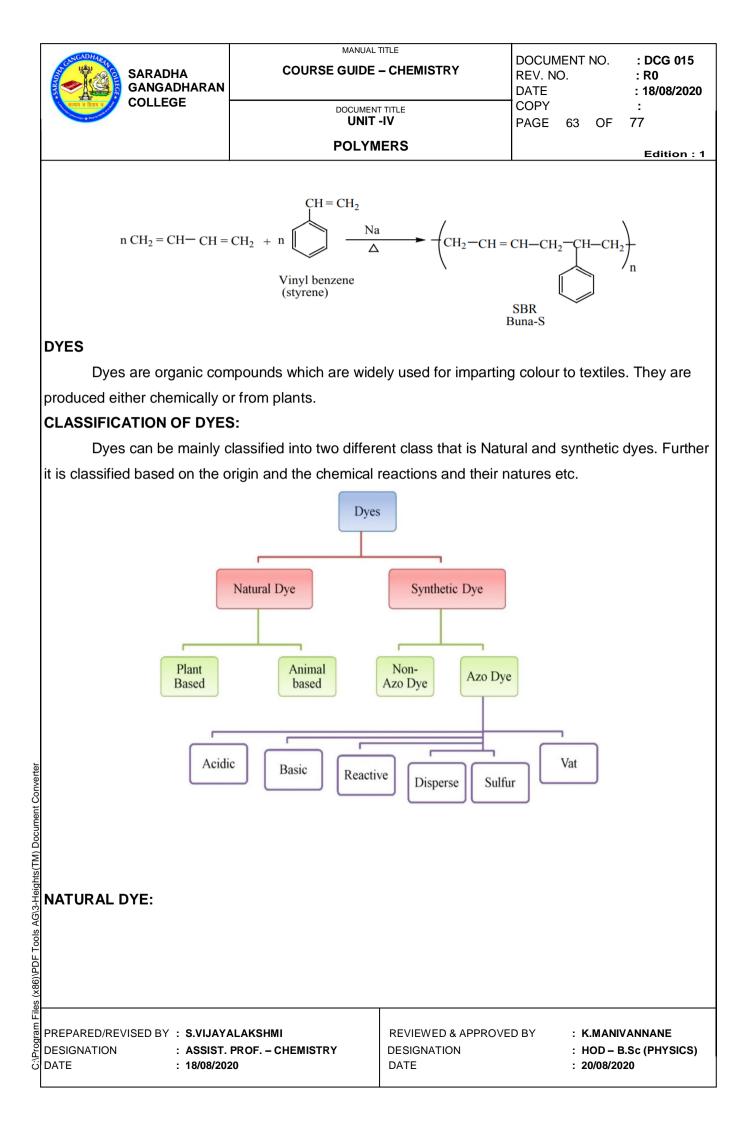
Polymerization of certain organic compounds such as buta-1, 3-diene or its derivatives gives rubber like polymer with desirable properties like stretching to a greater extent etc., such polymers are called synthetic rubbers.

Preparation of Neoprene: The free radical polymerization of the monomer, 2-chloro buta-1, 3-diene (chloroprene) gives neoprene. It is superior to rubber and resistant to chemical action.

$$nCH_{2} = C - CH = CH_{2} \xrightarrow{\text{free} \\ \text{radical}}_{\text{Polymerisation}} - \left[CH_{2} - C = CH - CH_{2}\right]_{n}$$

Uses: It is used in the manufacture of chemical containers, conveyer belts.

Preparation of Buna-N: It is a co-polymer of acrylonitrile and buta-1,3-diene


Uses: It is used in the manufacture of hoses and tank linings.

Preparation of Buna-S: It is a co-polymer. It is obtained by the polymerisation of buta-1, 3-diene and styrene in the ratio 3:1 in the presence of sodium.

gram	PREPARED/REVISED BY	:	S.VIJAYALAKSHMI
C:\Proc	PREPARED/REVISED BY DESIGNATION DATE	:	ASSIST. PROF. – CHEMISTRY 18/08/2020

: K.MANIVANNANE

: HOD – B.Sc (PHYSICS) : 20/08/2020

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 015 : R0 : 18/08/2020
COLLEGE		COPY PAGE 63 OF	: 77
	POLTMERS		Edition: 1

Dyes, as stated earlier, can be obtained from natural sources such as vegetable matter, mineral or insects or are manufactured in the factory from petrochemical feedstock. Amongst natural dyes, indigo is well known for its brilliant blue colour and was obtained by fermenting the leaves of a plant. The red coloured lac dye is extracted from lac, a resinous protective secretion of a tiny insect.

SYNTHETIC DYES:

I Direct Dyes: (Non- Azo dyes)

• Direct dyes are cheap and easy to apply, but of poor fastness quality.

• These dyes are also known as 'salt dyes' or cotton colours, which dye cotton, other vegetable fibres and viscose rayon.

• They are readily soluble in water. Colours of cotton fabrics dyed with direct dyes are not fast.

• They are applied to Cellulose fibres from aqueous liquor in which an electrolyte is added, which is usually Sodium Chloride as it accelerates the rate at which the dye is picked up by the fibre.

• They generally bleed. To make them fast on fabric add Sodium Bicarbonate for warm colours, and Copper Sulphate for cool colours.

II AZO DYES:

(i) Acid dyes:

• These are soluble in water and are applied under acidic conditions.

• The acid dyestuff is mostly used for wool and silk and to a less

extent nylon and acrylic fibres.

• The maximum quantity of dye absorbed depends on the amount of H2SO4 present in the bath.

Acid dyes are inexpensive dyes.

• They are fast to light, but they are not fast to washing.

Acid dyes

(ii)Vat dyes:

They are insoluble in water, but they are made soluble by the use of a strong reducing agent, such as

D, . . L

Sodium hydrosulphite dissolved in sodium

hydroxide

۵

PREPARED/REVISED BY : S.VIJAYALAKSHMI DESIGNATION DATE

: ASSIST. PROF. - CHEMISTRY : 18/08/2020

Vat dyes

. • These are the fastest dyes for cotton, linen and rayon.

• They also may be applied to wool, nylon, polyester etc.

• Vat dyes are hot water dyes. • Hot water dyes are available in both powder and liquid form.

• The first synthetic Vat dye was an Indigo created in 1879.

• Vat dyes are expensive because of the initial cost as well as the method of application.

(iii)Azoic dyes:

The Azoic colours are applied to cotton in two stages. The first consists of treatment with naphthol and the second by treatment of the naphtholated material with diazotized base or diazotized salt. The colour development takes place in-situ by the coupling reaction between naphthol and diazo component.

· They are quite fast to washing and have poor to excellent light fastness.

· Azoic colours are used mostly on cotton and for special purposes on nylon

· Azoic colours are sometimes referred to as ice dyes because ice is frequently used to bring the dyes to low temperatures.

• Azoic colours give bright, high intensity colours, much more so than the common dye classes.

• These are cold water dyes and are most suitable for cold dyeing techniques such as Batik, Tie-Dye, etc.

(iv) Basic dyes:

• The first coal tar dye was a basic dye.

It is applied to wool, silk, cotton, acrylic, and modacrylic fibres.

• When acrylic fibres were first marketed, they were very difficult to dye due to lack of specific dye sites in the fibres. Such groups were introduced into the fibre and brilliant colours can now be obtained with these dyes.

They give good fastness and bright shades to acrylics.

(v) Reactive dyes:

PREPARED/REVISED BY : S.VIJAYALAKSHMI DESIGNATION DATE

۵

: ASSIST. PROF. - CHEMISTRY : 18/08/2020

REVIEWED & APPROVED BY DESIGNATION DATE

: K.MANIVANNANE

: HOD - B.Sc (PHYSICS)

Basic dyes

• The dye is retained by means of a chemical reaction between the dye and the fibre. As such their fastness properties are excellent.

• The fibres most readily coloured with reactive dyes are natural and manmade cellulosic fibres, natural protein fibres and polyamide fibres.

• With some reactive dyes, the dyeing can be carried out at room temperature. However with most reactive dyes, the dyeing is carried out at high temperatures (up to the boil).

Itra UV-Res	Tra UV-Reals Venom Gr	Ultra U

Reactive dyes

(vi) Disperse dyes:

• The fibres that are most commonly dyed with disperse dyes are cellulose diacetate, cellulose triacetate and polyester fibres. To a lesser extent acrylic and nylon fibres are also dyed with disperse dyes.

• Polyester fibres being hydrophobic and with significant crystalline content, the assistance of high temperature, high pressure and carriers (which swell the fibre) is taken to achieve satisfactory dyeing.

Disperse dyed fabric

(vi) Sulphur dyes:

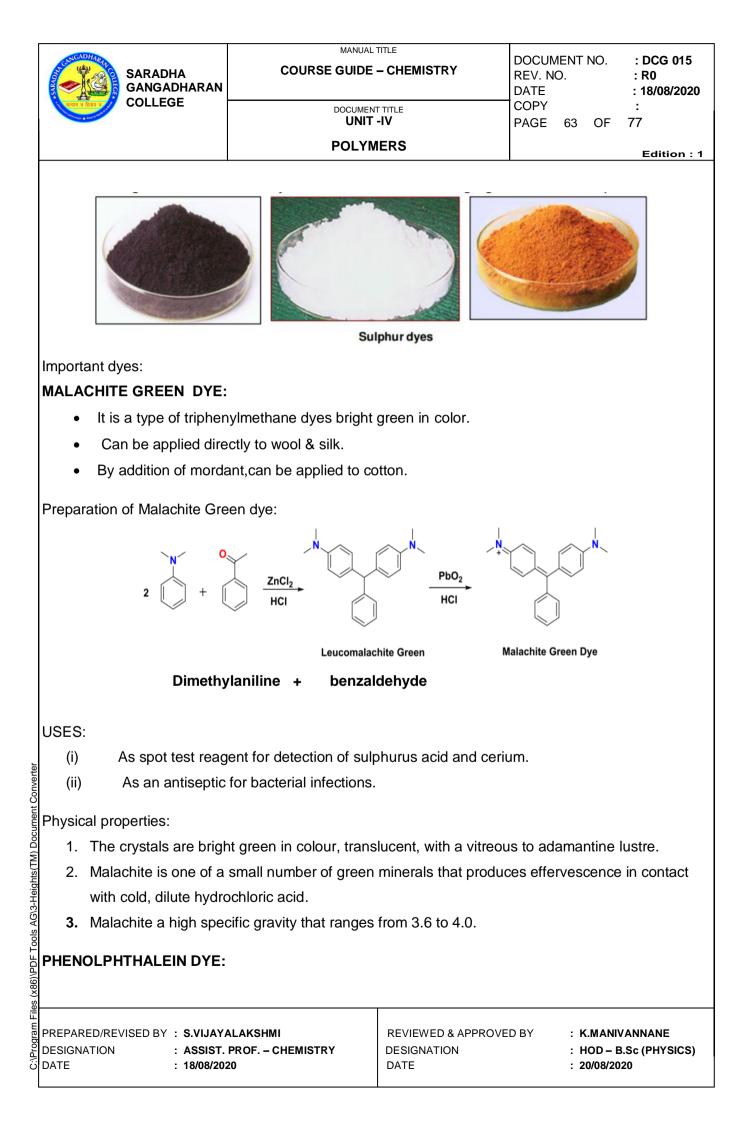
:86)\PDF

ò

Natural and manmade cellulosic fibres are readily dyed with Sulphur dyes.

• Water soluble or leuco form of the dye is produced through reduction of the dye with Sodium

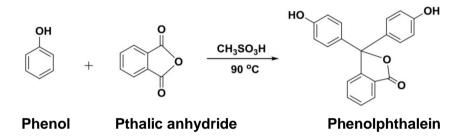
Sulphide or Sodium Hydrosulphite.


The dye liquor is heated to obtain satisfactory rate of dyeing

• Once the dye is within the fibre, the reduced Sulphur dye is converted to its original insoluble form by oxidation with an oxidizing agent like Sodium perborate.

: K.MANIVANNANE

: HOD - B.Sc (PHYSICS)


: 20/08/2020

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 015 : R0 : 18/08/2020
COLLEGE		COPY PAGE 63 OF	: 77
	FULIMENS		Edition: 1

Phenolphthalein is an organic compound used as a laboratory reagent and pH indicator. Phenolphthalein exerts laxative effects by stimulating the intestinal mucosa and constricting smooth muscles. However, phenolphthalein is no longer used as a laxative due to the suspected carcinogenicity of this compound. It belongs to class of dyes known as phthalein dyes. Preparation :

Phenolphthalein can be prepared by reaction of phenol with pthalic anhydride.

Properties:

- 1. Phenolphthalein is slightly soluble in water and usually is dissolved in alcohols for use in experiments.
- 2. It is either yellowish-white to pale orange or white fine crystalline powder and in its liquid form it appears as a colourless till PH 8.5 and above that it appears as pink to deep red.
- 3. It does not have taste and smell.

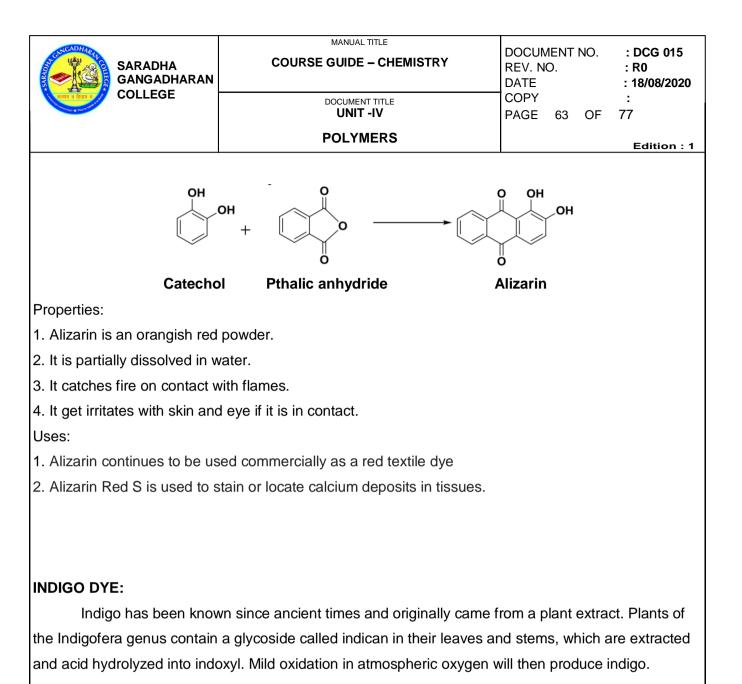
Uses:

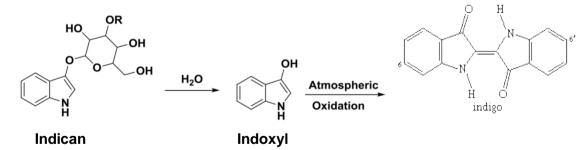
- 1. This chemical compound is widely used as PH indicator and laboratory agent.
- 2. Phenolphthalein is often used as an indicator in acid-base titrations. For this application, it turns colorless in acidic solutions and pink in basic solutions.

ALIZARIN DYE

The compound alizarin comes from the root of the madder plant. It is used as a dye to color fabrics. Alizarin can also be used as a pH indicator.

Preparation:


PDF x86)


ò

Alizarin is obtained when catechol is condensed with the phthalic anhydride in the presence of the anhydrous Aluminium chloride or conc. sulphuric acid at 140-150°C.

: K.MANIVANNANE

: HOD - B.Sc (PHYSICS) : 20/08/2020

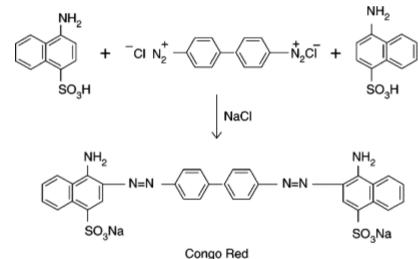
Properties:

- 1. It is insoluble in water, alcohol or ether but soluble in DMSO, chloroform, nitrobenzene, and concentrated sulfuric acid.
- 2. Indigo is a dark blue crystalline powder that sublimes at 390–392 °C.

Ĩ				
aran	PREPARED/REVISED BY	: S.VIJAYALAKSHMI	REVIEWED & APPROVED BY	: K.MANIVANNANE
Pro	DESIGNATION	: ASSIST. PROF. – CHEMISTRY	DESIGNATION	: HOD – B.Sc (PHYSICS)
	DATE	: 18/08/2020	DATE	: 20/08/2020

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 015 : R0 : 18/08/2020
COLLEGE	DOCUMENT TITLE UNIT -IV	COPY PAGE 63 OF	: 77
	POLYMERS		Edition : 1

USES :


- 1. The primary use for indigo is as a dye for cotton yarn, mainly used in the **production** of denim cloth suitable for blue jeans.
- 2. Smaller quantities are used in the dyeing of wool and silk.
- 3. The Indigo Leaves are used to make hair dye as well as prepare medicated hair oil.
- 4. Leaf powder is used as natural black colour dye for hair.
- 5. Indigofera make your hair more manageable, moisturized, and protected with radiant shine.

CONGO RED DYE:

Congo red is an organic compound, the sodium salt of 3,3'-([1,1'-biphenyl]-4,4'-diyl)bis(4-aminonaphthalene-1-sulfonic acid).

Preparation:

It is prepared by azo coupling of the bis(diazonium) derivative of benzidine with naphthionic acid.

Properties:

- 1. It is an azo dye.
- 2. Congo red is water-soluble, yielding a red colloidal solution; its solubility is greater in organic solvents. However, the use of Congo red has long been abandoned, primarily because of its carcinogenic properties.

- : K.MANIVANNANE : HOD – B.Sc (PHYSICS)
- : 20/08/2020

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 015 : R0 : 18/08/2020
COLLEGE	DOCUMENT TITLE UNIT -IV	COPY PAGE 63 OF	: 77
	POLYMERS		Edition : 1

Uses:

1. Congo red can be used as a pH indicator. Since this colour change is an approximate inverse of that of litmus, it can be used with litmus paper in a simple parlor trick

: K.MANIVANNANE

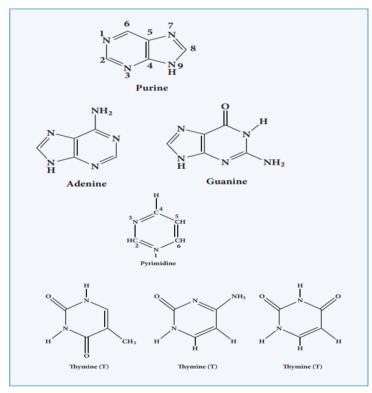
: HOD – B.Sc (PHYSICS) : 20/08/2020

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUN REV. NO DATE		NO.	: DCG 016 : R0 : 05/04/2020
COLLEGE	DOCUMENT TITLE UNIT -V	COPY PAGE	78	OF	: 90
	NUCLEIC ACID AND DRUGS				Edition : 1

NUCLEIC ACID:

The inherent characteristics of each and every species are transmitted from one generation to the next. It has been observed that the particles in nucleus of the cell are responsible for the transmission of these characteristics. They are called chromosomes and are made up of proteins and another type of biomolecules called nucleic acids.

There are mainly two types nucleic acids, the deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). They are the molecular repositories that carry genetic information in every organism. Composition and structure of nucleic acids Nucleic acids are biopolymers of nucleotides. Controlled hydrolysis of DNA and RNA yields three components namely a nitrogenous base, a pentose sugar and phosphate group.

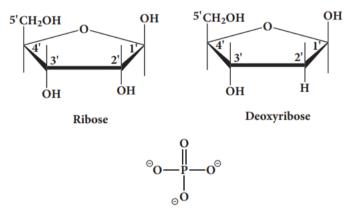

Nitrogen base:

(x86)\PDF Tools AG\3-Heights(TM) Document Converter

Pro-

ċ

These are nitrogen containing organic compounds which are derivatives of two parent compounds, pyrimidine and purine. Both DNA and RNA have two major purine bases, adenine (A) and guanine (G). In both DNA and RNA, one of the pyrimidines is cytosine (C), but the second pyrimidine is thymine (T) in DNA and uracil (U) in RNA.


PREPARED/REVISED BY:S.VIJAYALAKSHMIDESIGNATION:ASST. PROF. - CHEMISTRYDATE:25/08/2020

REVIEWED & APPROVED BY DESIGNATION DATE : K.MANIVANNANE

: HOD – B.Sc (PHYSICS) : 28/08/2020

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 016 : R0 : 05/04/2020
COLLEGE		COPY PAGE 78 OF	: 90
	NOCLEIC ACID AND DRUGS		Edition:1

Pentose sugar: Nucleic acids have two types of pentose. The recurring deoxyribonucleotide units of DNA contain 2'-deoxy-D-ribose and the ribonucleotide units of RNA contain D-ribose. In nucleotides, both types of pentose are in their β-furanose (closed five membered rings) form.

Phosphate group: Phosphoric acid forms phosphor diester bond between nucleotides. Based on the number of phosphate group present in the nucleotides, they are classified into mono nucleotide, dinucleotide and trinucleotide.

NUCLEOSIDES AND NUCLEOTIDES:

The molecule without the phosphate group is called a nucleoside. A nucleotide is derived from a nucleoside by the addition of a molecule of phosphoric acid. Phosphorylation occurs generally in the 5' OH group of the sugar. Nucleotides are linked in DNA and RNA by phospho diester bond between 5' OH group of one nucleotide and 3' OH group on another nucleotide.

Sugar + Base \longrightarrow Nucleoside Nucleoside + Phosphate \longrightarrow Nucleotide nNucleotide \longrightarrow Polynucleotide (Nucleic Acid)

Ribose Nucleic Acids:

ò

Most cellular RNA is single stranded, although some viruses have double stranded RNA. The single RNA strand is folded upon itself, either entirely or in certain regions. In the folded region a majority of the bases are complementary and are joined by hydrogen bonds. This helps in the stability of the molecule. In the unfolded region the bases have no complements. Because of this RNA does not have the purine, pyrimidine equality that is found in DNA.

: K.MANIVANNANE

: HOD – B.Sc (PHYSICS) : 28/08/2020

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 016 : R0 : 05/04/2020
COLLEGE	DOCUMENT TITLE UNIT -V	COPY PAGE 78 OF	: 90
	NUCLEIC ACID AND DRUGS		Edition : 1

RNA also differs from DNA in having ribose as the sugar instead of deoxyribose. The common nitrogenous bases of RNA are adenine, guanine, cytosine and uracil. Thus the pyrimidine uracil substitutes thymine of DNA. In regions where purine pyrimidine pairing takes place, adenine pairs with uracil and guanine with cytosine. In addition to the four bases mentioned above, RNA also has some unusual bases.

RNA molecules are classified according to their structure and function into three major types i. Ribosomal RNA (rRNA) ii. Messenger RNA (mRNA) iii. Transfer RNA (tRNA).

Ribosomal rRNA:

rRNA Ribosomal RNA, as the name suggests, is found in the ribosomes. It comprises about 80% of the total RNA of the cell. The base sequence of rRNA is complementary to that of the region of DNA where it is synthesized. In eukaryotes ribosomes are formed on the nucleolus. Ribosomal RNA is formed from only a small section of the DNA molecule, and hence there is no definite base relationship between rRNA and DNA as a whole. Ribosomal RNA consists of a single strand twisted upon itself in some regions. It has helical regions connected by intervening single strand regions.

The helical regions may show presence or absence of positive interaction. In the helical region most of the base pairs are complementary, and are joined by hydrogen bonds. In the unfolded single strand regions the bases have no complements. Ribosomal RNA contains the four major RNA bases with a slight degree of methylation, and shows differences in the relative proportions of the bases between species. Its molecules appear to be single polynucleotide strands which are unbranched and flexible. At low ionic strength rRNA behaves as a random coil, but with increasing ionic strength the molecule shows helical regions produced by base pairing between adenine and uracil and guanine and cytosine.

Transfer tRNA:

tRNA molecules have lowest molecular weight of all nucleic acids. They consist of 73 - 94 nucleotides in a single chain. The function of tRNA is to carry amino acids to the sites of protein synthesis on ribosomes.

Structure of Transfer RNA :

tRNA's are L-shaped molecules. The amino acid is attached to one end and the other end consists of three anticodon nucleotides. The anticodon pairs with a codon in messenger RNA (mRNA) ensuring that the correct amino acid is incorporated into the growing polypeptide chain. The L-shaped

86)

ò

COLLEGE DOCUMENT TITLE COPY :	SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUM REV. NO DATE		NO.	: DCG 016 : R0 : 05/04/2020
UNIT-V PAGE 78 OF 90	COLLEGE	DOCUMENT TITLE UNIT -V		78	OF	: 90
NUCLEIC ACID AND DRUGS		NUCLEIC ACID AND DRUGS				Edition : 1

tRNA is formed from a small single-stranded RNA molecule that folds into the proper conformation. Four different regions of double-stranded RNA are formed during the folding process.

Messenger mRNA:

mRNA is present in small quantity and very short lived. They are single stranded, and their synthesis takes place on DNA. The synthesis of mRNA from DNA strand is called transcription. mRNA carries genetic information from DNA to the ribosomes for protein synthesis. This process is known as translation.

Stability of Messenger RNA:

mRNA - The cell does not contain large quantities of mRNA. This is because mRNA, unlike other RNAs is constantly undergoing breakdown. It is broken down to its constituent ribonucleotides by ribonucleases. Structure of Messenger RNA - mRNA Messenger RNA is always single stranded. It contains mostly the bases adenine, guanine, cytosine and uracil. There are few unusual substituted bases. Although there is a certain amount of random coiling in extracted mRNA, there is no base pairing. In fact base pairing in the mRNA strand destroys its biological activity Since mRNA is transcribed on DNA (genes), its base sequence is complementary to that of the segment of DNA on which it is transcribed. This has been demonstrated by hybridization experiments in which artificial RNA, DNA double strands are produced. Hybridization takes place only if the DNA and RNA strands are complementary.

COMPARISON OF RNA AND DNA:

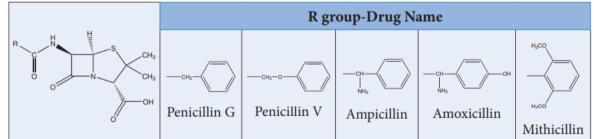
			DNA	RNA
	1	1.	DNA is the usual genetic material	RNA is the genetic material of some
				viruses.
D	2	2.	DNA is usually double-stranded,	Most cellular RNA is single stranded.
D I I O			(In certain viruses DNA is single	(Some viruses e.g. retrovirus, have
			stranded, e.g. φ X 174).	double stranded RNA).
n n n n	З	3.	The pentose sugar is deoxyribose.	The pentose sugar is ribose.
1111	4	4.	The common organic bases are	The common organic bases are
			adenine, guanine, cytosine and thymine.	adenine, guanine, cytosine and uracil.
	5	5.	Base pairing: adenine pairs with	Adenine pairs with uracil and guanine
			thymine and guanine with cytosine.	with cytosine.
	PREPARED/F DESIGNATIO DATE			REVIEWED & APPROVED BY: K.MANIVANNANEDESIGNATION: HOD - B.Sc (PHYSICS)DATE: 28/08/2020

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUM REV. NO DATE		NO.	: DCG 016 : R0 : 05/04/2020
COLLEGE	DOCUMENT TITLE UNIT -V	COPY PAGE	78	OF	: 90
	NUCLEIC ACID AND DRUGS				Edition:1

DRUGS

A very broad definition of a drug would include "all chemicals other than food that affect living processes." If the affect helps the body, the drug is a medicine. However, if a drug causes a harmful effect on the body, the drug is a poison.

Another definition would be "medicinal agents used for diagnosis, prevention, treatment of symptoms, and cure of diseases."


Classification of drugs:

Drugs are classified based on their properties such as chemical structure, pharmacological effect, target system, site of action etc.

Classification based on the chemical structure:

In this classification, drugs with a common chemical skeleton are classified into a single group. For example, ampicillin, amoxicillin, methiceillin etc. All have similar structure and are classified into a single group called penicillin. Similarly, we have other group of drugs such as opiates, steroids, catechol amines etc. Compounds having similar chemical structure are expected to have similar chemical properties. However, their biological actions are not always similar. For example, all drugs belonging to penicillin group have same biological action, while groups such as barbiturates, steroids etc... have different biological action.

Penicillins

۵

Classification based on Pharmacological effect:

In this classification, the drugs are grouped based on their biological effect that they produce on the recipient. For example, the medicines that have the ability to kill the pathogenic bacteria are grouped as antibiotics. Examples: Antibiotic drugs: amoxicillin, ampicillin, cefixime, cefpodoxime, erythromycin, tetracycline etc.. Antihypertensive drugs: propranolol, atenolol, metoprolol succinate, amlodipine etc...

: K.MANIVANNANE

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 016 : R0 : 05/04/2020
COLLEGE	DOCUMENT TITLE UNIT -V	COPY PAGE 78 OF	: 90
	NUCLEIC ACID AND DRUGS		Edition: 1

Classification based on the target system (drug action):

In this classification, the drugs are grouped based on the biological system/process that they target in the recipient. For example; the antibiotics streptomycin and erythromycin inhibit the protein synthesis (target process) in bacteria and are classified in a same group. However, their mode of action is different. Streptomycin inhibits the initiation of protein synthesis, while erythromycin prevents the incorporation of new amino acids to the protein.

Classification based on the site of action (molecular target):

The drug molecule interacts with biomolecules such as enzymes, receptors etc., which are referred as drug targets. We can classify the drug based on the drug target with which it binds. This classification is highly specific compared to the others. These compounds often have a common mechanism of action, as the target is the same.

Drug-target Interaction:

The biochemical processes such as metabolism (which is responsible for breaking down the food molecules and harvest energy in the form of ATP and biosynthesis of necessary bio molecules from the available precursor molecules using many enzymes), cell-signalling (senses any change in the environment using the receptor molecules and send signals to various processes to elicit an appropriate response) etc... are essential for the normal functioning of our body.

These routine processes may be disturbed by any external factors such as microorganism, chemicals etc., or by a disorder in the system itself. Under such conditions we may have to take medicines to restore the normal functioning of the body. These drug molecules interact with bio molecules such as proteins, lipids, etc., that are responsible for different functions of the body. For example, proteins which act as biological catalysts are called enzymes and those which are important for communication systems are called receptors. The drug interacts with these molecules and modifies the normal biochemical reactions either by modifying the enzyme activity or by stimulating/suppressing certain receptors.

SITES OF DRUG ACTION:

I. Enzyme inhibition: Drugs act within the cell by modifying normal biochemical reactions. Enzyme inhibition may be reversible or non-reversible; competitive or non-competitive. Anti-metabolites may be used which mimic natural metabolites.

(98)

ò

: K.MANIVANNANE : HOD - B.Sc (PHYSICS)

: 28/08/2020

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 016 : R0 : 05/04/2020
COLLEGE	DOCUMENT TITLE UNIT -V	COPY PAGE 78 OF	: 90
	NUCLEIC ACID AND DRUGS		Edition : 1

2. Drug-Receptor interaction: Drugs act on the cell membrane by physical and/or chemical interactions. This is usually through specific drug receptor sites known to be located on the membrane. A receptor is the specific chemical constituents of the cell with which a drug interacts to produce its pharmacological effects. Some receptor sites have been identified with specific parts of proteins and nucleic acids. In most cases, the chemical nature of the receptor site remains obscure.

3. Non-specific interactions: Drugs act exclusively by physical means outside of cells. These sites include external surfaces of skin and gastrointestinal tract. Drugs also act outside of cell membranes by chemical interactions. Neutralization of stomach acid by antacids is a good example

MODE OF DRUG ACTION:

It is important to distinguish between actions of drugs and their effects. Actions of drugs are the biochemical's, physiological mechanisms by which the chemical produces a response in living organisms. The effect is the observable consequence of a drug action. For example, the action of penicillin is to interfere with cell wall synthesis in bacteria and the effect is the death of bacteria.

MECHANISM OF DRUG ACTION:

A drug act by virtue of its various properties like physical, chemical, physiological etc. The fundamental mechanisms of drug action can be distinguished into following categories.

1. Physical Properties:

A physical property of the drug is responsible for its action. (i) Taste. Bitter taste drugs increase the flow the hydrochloric acid reflexly in the stomach. Ex: Quassia, Chirata (ii) Mass. By increasing the bulk of drug in intestine produce laxative effect. Ex: Isapgol (iii) Adsorption. Certain drugs like kaolin adsorb water on to its surface and there by reduce gastric motility (iv) Radioactivity. The radioactive substances are commonly used to treat cancer.

2. Chemical Properties:

The drugs react extracellularly according to simple chemical reactions like neutralization, chelation, oxidation etc. Ex: (i) Aluminium hydroxide neutralizes acid in stomach (ii) Toxic heavy metals can be eliminated by chelating agents like EDTA, BAL, penicillamine etc. (iii) Oxidising agents are germicidal.

3. Through Enzymes:

(36)\PDF

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUME REV. NO. DATE	NT NO.	: DCG 016 : R0 : 05/04/2020
COLLEGE	DOCUMENT TITLE UNIT -V	COPY PAGE	78 OF	: 90
	NUCLEIC ACID AND DRUGS			Edition: 1

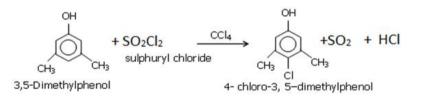
Enzymes are very important targets of drug action because almost all biological reactions are carried out under the influence of enzymes. Drugs may either increase or decrease enzymatic reactions. Ex: (i) Adrenaline stimulates adenyl cyclase (ii) Pyridoxine acts as a cofactor and increases decarboxylase activity (iii) Allopurinol competes with hypoxanthine for xanthine oxidase (iv) Physostigmine and neostigmine compete with acetylcholine for cholinesterase.

4. Through Receptors:

A large number of drugs act through specific macromolecular components of the cell, which regulate critical functions like enzymatic activity, permeability, structural features, template function etc. These macromolecules, which bind and interact with the drugs, are called receptors.

THERAPEUTIC ACTION OF DIFFERENT CLASSES OF DRUGS:

I ANTISEPTIC (DETTOL):


Class of Drugs: Antiseptic Example: Dettol

Mode of action: Stop or slow down the growth of microorganisms - Applied to living tissue

Chemical name: 4-chloro-3,5-dimethylphenol (Chloroxylenol)

Preparation of Dettol:

Dettol can be prepared by treating 3,5-dimethyl phenol with thionyl chloride in the presence of carbon tetrachloride gives 4-chloro-3,5-dimethylphenol (Chloroxylenol)

(Chloroxylenol)

<u>Uses:</u> (i) Chloroxylenol is used in hospitals and households for disinfection and sanitation.

(ii) It is also commonly used in antibacterial soaps, wound-cleansing applications and household antiseptics such as

Dettol liquid

II ANTIPYRETIC (PARACETAMOL):

Files (x86)\PDF Tools

ľ,

gram	PREPARED/REVISED BY DESIGNATION	:	S.VIJAYALAKSHMI
Pro(DESIGNATION	:	ASST. PROF. – CHEMISTRY
3	DATE	:	25/08/2020

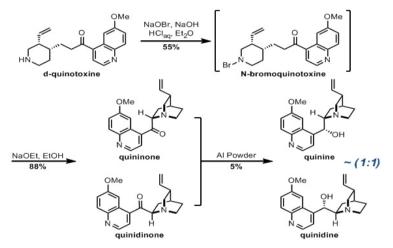
: 28/08/2020

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 016 : R0 : 05/04/2020
COLLEGE	DOCUMENT TITLE UNIT -V	COPY PAGE 78 OF	: 90
	NUCLEIC ACID AND DRUGS		Edition : 1
		·	
Class of Drugs: Antipyretic	Example: paracetamol		
Mode of action: Paracetam	ol has a central analgesic effect that i	s mediated through	activation c
descending serotonergic pa	thways. These drugs have many othe	r effects such as re	educing feve
(antipyretic)			
Chemical name: acetaminop	hen		
Preparation of Paracetamol:			
Paracetamol is made by read	cting 4-aminophenol with ethanoic anhyc	ride.	
HO	0 0 H ₃ C-C-O-C-CH ₃ → HO-	→ H U N-C-CH ₃ + H	О ₃С−С–ОН
p-aminophenol	acetic anhydride par	acetamol	acetic acid
<u>Uses:</u>			
(i)Paracetamol is a	common painkiller used to treat aches	and pain . It can als	o be used t
reduce a high temperature.			
(ii) Used for short-ter	m pain relief and for modest pain like he	adache, muscle strai	n, bruising, c
arthritis.			
III ANALGESIC (ASPIRIN):			
Class of Drugs: Analgesic	Example: Aspirin		
Mode of action: Aspirin and	other non-steroid anti-inflammatory dru	gs (NSAIDs) inhibit	the activity o
the enzyme now called cycl	ooxygenase (COX) which leads to the	ormation of prostag	landins (PGs
that cause inflammation, swe	elling, pain and fever.		
Chemical name: Acetylsalicy			
Preparation of Aspirin: To p	repare aspirin, salicylic acid is reacted w ucid is used as a catalyst which speeds u	ith an excess of ace	tic anhydride
A small amount of a strong a	rid is used as a catalvet which speeds u	n the reaction	

Preparation of Aspirin: 10 prepare aspirin, salicylic acid is reacted with an excess of A small amount of a strong acid is used as a catalyst which speeds up the reaction. $\begin{array}{c}
 & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$ OH acetic acid : K.MANIVANNANE : HOD - B.Sc (PHYSICS) : 28/08/2020

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 016 : R0 : 05/04/2020
COLLEGE	DOCUMENT TITLE UNIT -V	COPY PAGE 78 OF	: 90
	NUCLEIC ACID AND DRUGS		Edition : 1

<u>Uses:</u> (i) These drugs have many other effects such as reducing fever (antipyretic) and preventing platelet coagulation. Due to this property, aspirin finds useful in the prevention of heart attacks.


(ii) Reduces fever by causing the hypothalamus to override a prostaglandin-induced increase in temperature.

IV ANTIMALARIAL (QUININE):

Class of Drugs: Antimalarial Example: Quinine

<u>Mode of action</u>: Quinine inhibits nucleic acid synthesis, protein synthesis, and glycolysis in Plasmodium falciparum and can bind with hemazoin in parasitized erythrocytes.

Preparation of Quinine:

<u>Uses:</u>

x86)\PDF 7

Quinine is a medication used to treat malaria and babesiosis. This includes the treatment of malaria due to Plasmodium falciparum that is resistant to chloroquine.

V ANTIBIOTIC (PENICILLIN)

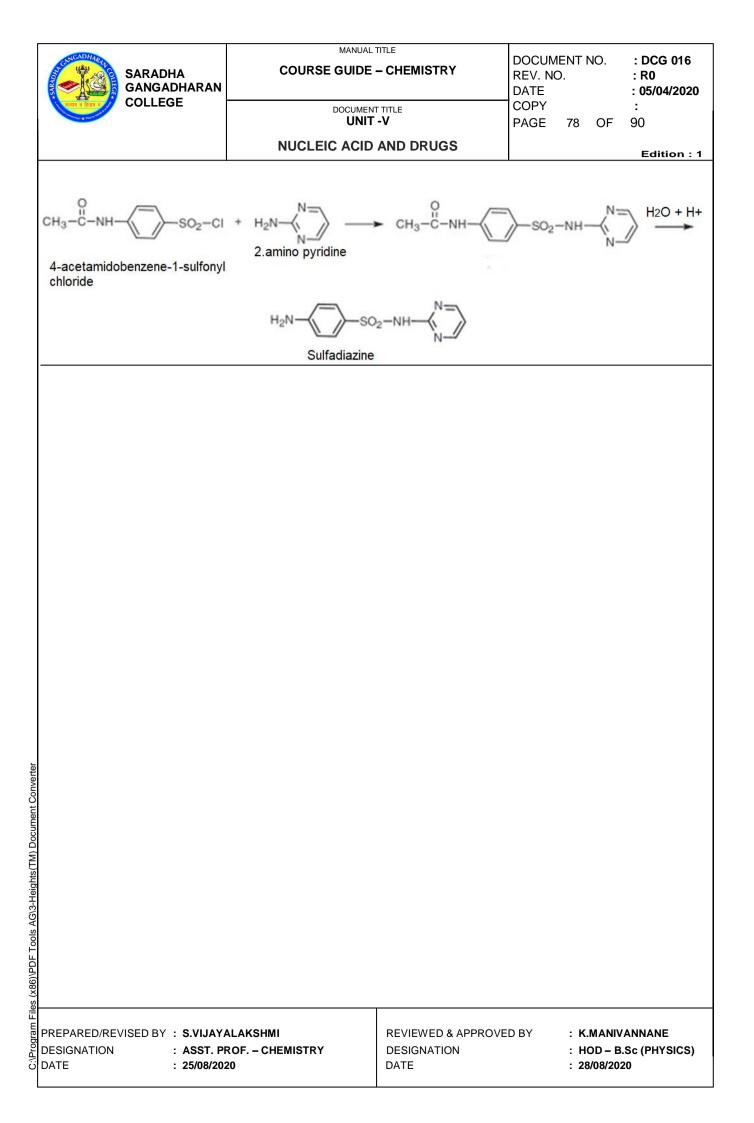
Class of Drugs: Antibiotic Example: Penicillin

<u>Mode of action:</u> Penicillin kills bacteria through binding of the beta-lactam ring to DD-transpeptidase, inhibiting its cross-linking activity and preventing new cell wall formation. Without a cell wall, a bacterial cell is vulnerable to outside water and molecular pressures, which causes the cell to quickly die. <u>Structure of Penicillin:</u>

REVIEWED & APPROVED BY DESIGNATION DATE

: K.MANIVANNANE : HOD – B.Sc (PHYSICS)

: 28/08/2020


CADL		MANUAL TITLE						
SARADHA GANGADHARAN COLLEGE		COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 016 : R0 : 05/04/2020				
		DOCUMENT TITLE UNIT -V	COPY PAGE 78 OF	: 90				
		NUCLEIC ACID AND DRUGS		Edition: 1				
pneur (ii) Other	nonia. respiratory infections.	sium is used to treat certain infections cau tract infections, scarlet fever, and ear, skin,	·	ch as				
		Example: Sulfadiazine						
<u>Mode of action:</u> Sulfadiazine is a competitive inhibitor of the bacterial enzyme dihydropteroate synthetase. This enzyme is needed for the proper processing of para-aminobenzoic acid (PABA) which is essential for folic acid synthesis. The inhibited reaction is necessary in these organisms for the synthesis of folic acid.								
(ii) Drug bacte	Administration	antibacterial prescription medicine on (FDA) for the prevention and treatment of s, including the treatment of chancroid, To- ary tract infections, and other infections.						

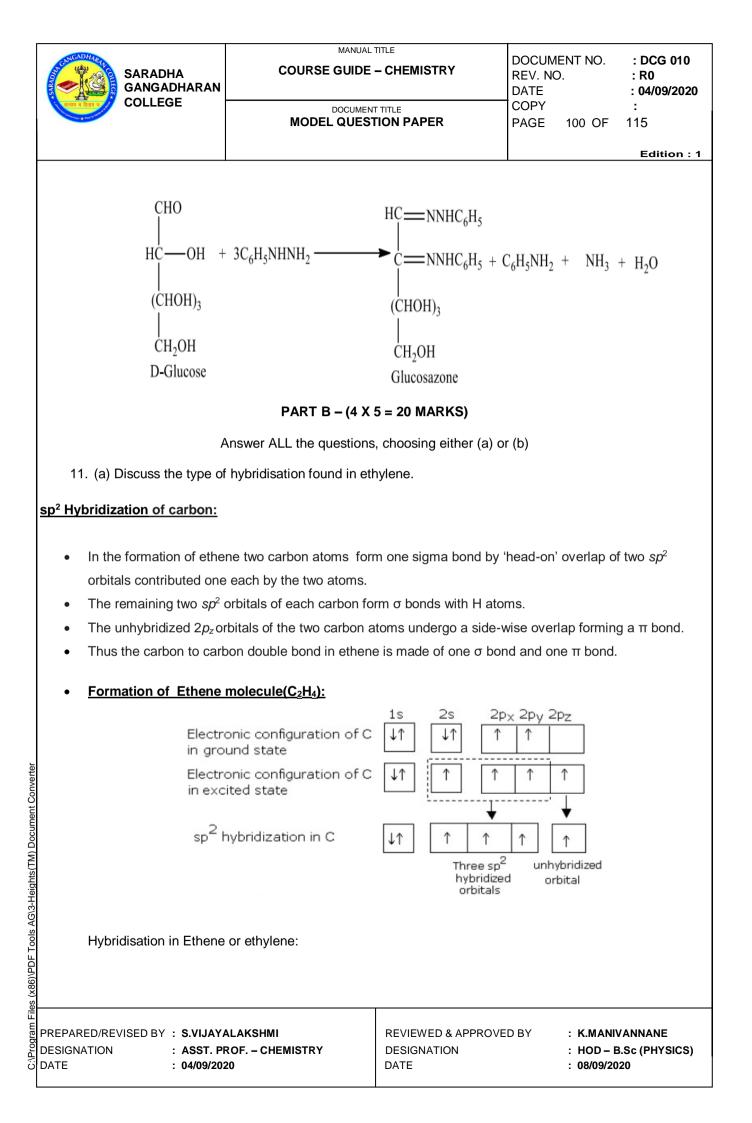
Sulfadiazine's is prepared as follows:

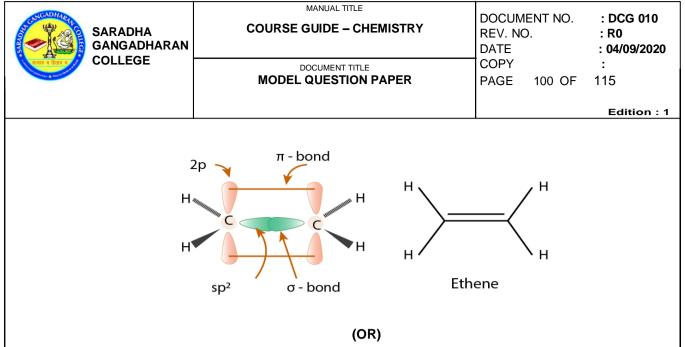
Sulfadiazine's is prepared as for Sulfadiazine's is prepared as for PREPARED/REVISED BY : S.VIJAYALAKSHMI DESIGNATION : ASST. PROF. - CHEM DATE : 25/08/2020 DESIGNATION : ASST. PROF. – CHEMISTRY

REVIEWED & APPROVED BY DESIGNATION DATE

: K.MANIVANNANE : HOD - B.Sc (PHYSICS) : 28/08/2020

	CNDR	MANUAL	TITLE		
	SARADHA GANGADHARAN	COURSE GUIDE	– CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 010 : R0 : 04/09/2020
	COLLEGE	DOCUMENT MODEL QUEST		COPY PAGE 100 OF	: 115
					Edition : 1
		•			
		B.Sc. DEGREE NOVEMBER / DI Third se Phy Allied: CHE (COMMOM FOR (From 2017 -	ECEMBER 2019. emester sics MISTRY –I ALL BRANCHES)		
	Time: 3 hrs		Maxin	num: 60 marks	
		PART A – (Answer ALL t			
	 Classify the following (a) BF₃ -Electrophile 	as electrophiles and nucle (b) NH₃ - Nucleophile	•	(d) CN [–] Nucleo	phile
		- $CI - CH_3 - CH = CH_2$ $CH_3 - CH_2 - CH - CH_3$ CH_3		?	
	 It must contain Its molecule m It must be sym Its molecule m 	ust be identical with its mi	s. s mirror image. rror image.	active is that	
	4. Assign R and S config	guration to the following m	olecules.		
iverter		OH - CHO – C – CH₃ - S C H	Configuration		
its(TM) Document Cor	(b) NH2 H – C – CH3 COOH	CH3 COOH – C –NH2 - H	R Configuration		
-Heigh	5. Write the Henderson-	Hasselbalch equation.			
es (x86)\PDF Tools AG\3-	(b) NH2 H – C – CH3 COOH 5. Write the Henderson- The Henderson-Ha PREPARED/REVISED BY : S.VIJAY DESIGNATION : ASST. P DATE : 04/09/20	asselbalch equation can b	e used to estimate the	pH of a buffer solu	ution.
C:\Program File	PREPARED/REVISED BY : S.VIJAY DESIGNATION : ASST. P DATE : 04/09/20	ROF. – CHEMISTRY	REVIEWED & APPROVE DESIGNATION DATE		VANNANE B.Sc (PHYSICS) 020


	SARADHA GANGADHARAN COLLEGE	MANUAL TITLE COURSE GUIDE – C	HEMISTRY	DOCUMENT NO. REV. NO. DATE COPY	: DCG 010 : R0 : 04/09/202 :
and the state of the state		DOCUMENT TIT MODEL QUESTIO		PAGE 100 OF	115
					Edition
		$\mathrm{pH} = \mathrm{p}K_\mathrm{a} + \mathrm{log}$	$_{10}\left(rac{[\mathrm{Base}]}{[\mathrm{Acid}]} ight)$		
		acid dissociation constant, h of the concentrations of the			
6. Define	e molarity and mo	olality.			
Molari	ty:				
It is de	fined as the num	ber of moles of the solute in	1 litre of the solution	on.	
Thus, I	Molarity (M) = No	o. of moles of solute / Volume	e of solution in litres	8	
Molali	ty:				
It is de	fined as the num	ber of moles of solute preser	nt in 1 kg of solvent	t.	
It is de	noted by m. Thus	s, Molality (m) = No. of moles	s of solute / Mass o	of solvent in kg	
	-	s, Molality (m) = No. of moles I fissile nuclei with examples		f solvent in kg	
	entiate fertile and	,	1	of solvent in kg	
7. Differ	entiate fertile and	d fissile nuclei with examples SILE ISOTOPES s are atoms that can	FEF	RTILE ISOTOPES are atoms that can	convert
7. Differ	entiate fertile and FIS Fissile isotope undergo fission	d fissile nuclei with examples SILE ISOTOPES s are atoms that can	FEF Fertile isotopes into fissile isotop	RTILE ISOTOPES are atoms that can bes ssionable isotopes t	
7. Differ S.NO 1	entiate fertile and FIS Fissile isotope undergo fission Converts into r upon fission	d fissile nuclei with examples SSILE ISOTOPES s are atoms that can n reactions	Fertile isotopes into fissile isotop Converts into fi combination of r	RTILE ISOTOPES are atoms that can bes ssionable isotopes t	upon the
 Differ S.NO 1 2 	entiate fertile and FIS Fissile isotope undergo fission Converts into r upon fission Can undergo f	d fissile nuclei with examples SSILE ISOTOPES s are atoms that can n reactions non-fissionable isotopes	Fertile isotopes into fissile isotop Converts into fi combination of r	RTILE ISOTOPES are atoms that can bes ssionable isotopes the neutrons	upon the
 Differ S.NO 1 2 3 4 	entiate fertile and FIS Fissile isotope undergo fission Converts into r upon fission Can undergo f Uranium – 235 Uranium -233	d fissile nuclei with examples SILE ISOTOPES s are atoms that can n reactions non-fissionable isotopes ission reactions directly	Fertile isotopes into fissile isotop Converts into fi combination of r	RTILE ISOTOPES are atoms that can bes ssionable isotopes the neutrons	upon the
 7. Differ S.NO 1 2 3 4 8. Write When 	entiate fertile and FIS Fissile isotope undergo fission Converts into r upon fission Can undergo f Uranium – 235 Uranium -233	d fissile nuclei with examples SILE ISOTOPES s are atoms that can <u>n reactions</u> non-fissionable isotopes <u>ission reactions directly</u> 5, Plutonium -239 and	Fertile isotopes into fissile isotop Converts into fi combination of r Cannot undergo Thorium – 232 a	RTILE ISOTOPES are atoms that can bes ssionable isotopes of neutrons of fission reactions di and Uranium -238	upon the rectly
 7. Differ S.NO 1 2 3 4 8. Write When called Nuclea 	entiate fertile and FIS Fissile isotope undergo fission Converts into r upon fission Can undergo f Uranium – 235 Uranium -233 nuclear fusion ar lighter nuclei mov nuclear fusion. ar fission is the p	d fissile nuclei with examples SILE ISOTOPES s are atoms that can <u>n reactions</u> non-fissionable isotopes ission reactions directly 5, Plutonium -239 and nd fission reactions.	Fertile isotopes into fissile isotop Converts into fi combination of r Cannot undergo Thorium – 232 a ed together to form	ATILE ISOTOPES are atoms that can bes ssionable isotopes of neutrons of fission reactions di and Uranium -238	upon the rectly e process is
 7. Differ S.NO 1 2 3 4 8. Write When called Nuclea size with 	entiate fertile and FIS Fissile isotope undergo fission Converts into r upon fission Can undergo f Uranium – 235 Uranium – 235 Uranium -235 uranium -235 at fission is the p th the release of	d fissile nuclei with examples SILE ISOTOPES s are atoms that can <u>n reactions</u> non-fissionable isotopes ission reactions directly 5, Plutonium -239 and nd fission reactions. ving at a high speed are fuse process in which a heavy nuc an enormous amount of energy	Fertile isotopes into fissile isotop Converts into fi combination of r Cannot undergo Thorium – 232 a ed together to form cleus breaks up into rgy.	ATILE ISOTOPES are atoms that can bes ssionable isotopes of neutrons of fission reactions di and Uranium -238	upon the rectly e process is
 7. Differ S.NO 1 2 3 4 8. Write When called Nuclea size wite 9. Which 	entiate fertile and FIS Fissile isotope undergo fission Converts into r upon fission Can undergo f Uranium – 235 Uranium –235 Uranium -235 uranium -235 nuclear fusion ar lighter nuclei mov nuclear fusion is the p th the release of n among the follo	d fissile nuclei with examples SILE ISOTOPES s are atoms that can <u>n reactions</u> non-fissionable isotopes ission reactions directly 5, Plutonium -239 and nd fission reactions. ving at a high speed are fuse process in which a heavy nuc	FEF Fertile isotopes into fissile isotop Converts into fi combination of r Cannot undergo Thorium – 232 a d together to form cleus breaks up into rgy.	ATILE ISOTOPES are atoms that can bes ssionable isotopes of neutrons of fission reactions di and Uranium -238	upon the rectly e process is of almost eq
 7. Differ S.NO 1 2 3 4 8. Write When called Nuclea size wite 9. Which (a) Sut 	entiate fertile and FIS Fissile isotope undergo fission Converts into r upon fission Can undergo f Uranium – 235 Uranium – 235 Uranium – 235 Uranium – 235 uranium – 235 the second nuclear fusion ar lighter nuclei mov nuclear fusion is the p th the release of n among the follo icrose - Non-rede	d fissile nuclei with examples SILE ISOTOPES s are atoms that can <u>n reactions</u> non-fissionable isotopes ission reactions directly 5, Plutonium -239 and nd fission reactions. ving at a high speed are fuse process in which a heavy nuc an enormous amount of energy wing is/are reducing carbohy	Fertile isotopes into fissile isotop Converts into fi combination of r Cannot undergo Thorium – 232 a d together to form cleus breaks up into rgy.	ATILE ISOTOPES are atoms that can be ssionable isotopes un eutrons of fission reactions di and Uranium -238 a heavy nucleus, th o two lighter nuclei of	upon the rectly e process is of almost eq
 7. Differ S.NO 1 2 3 4 8. Write When called Nuclea size with 9. Which (a) Suth 10. How it 	entiate fertile and Fissile isotope undergo fission Converts into r upon fission Can undergo f Uranium – 235 Uranium – 235 Uranium – 235 Uranium – 235 Inuclear fusion ar lighter nuclei mov nuclear fusion. ar fission is the p th the release of n among the follo acrose - Non-rede s glucosazone of	d fissile nuclei with examples SILE ISOTOPES s are atoms that can <u>n reactions</u> non-fissionable isotopes ission reactions directly 5, Plutonium -239 and nd fission reactions. ving at a high speed are fuse process in which a heavy nue an enormous amount of energy wing is/are reducing carbohy ucing (b) glucose – Reducing	Fertile isotopes into fissile isotop Converts into fi combination of r Cannot undergo Thorium – 232 a d together to form cleus breaks up into rgy.	ATILE ISOTOPES are atoms that can bes ssionable isotopes of neutrons of fission reactions di and Uranium -238 a heavy nucleus, th o two lighter nuclei of ducing (d) fructose -	upon the rectly e process is of almost eq - Reducing


- 9. Which among the following is/are reducing carbohydrates?
 - (a) Sucrose Non-reducing (b) glucose Reducing (c)ribose - Reducing (d) fructose - Reducing
- 10. How is glucosazone obtained from glucose? Give the reaction.

\Program

ċ

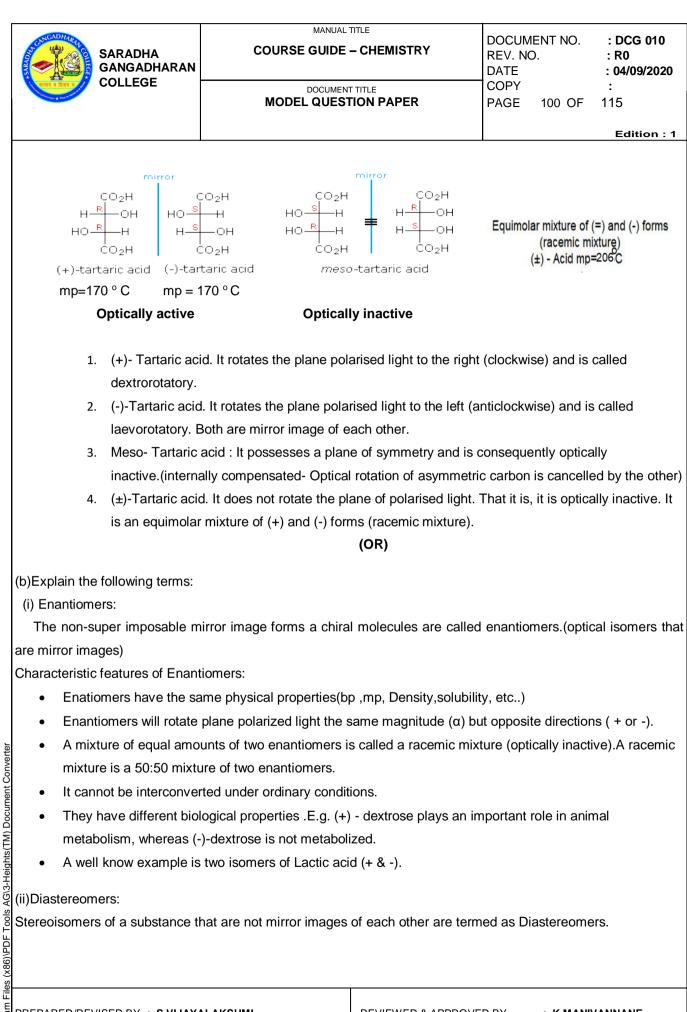
: K.MANIVANNANE

(b) Differentiate between homolytic and heterolytic fission with suitable examples.

S.NO	HOMOLYTIC FISSION	HETEROLYTIC FISSION
1.	When the cleavage of covalent bond	When the cleavage of covalent bond
	between two atoms takes place in a	between two atoms takes place in a
	manner, which enables each atom to	manner, which enables each atom to
	retain one electron of the shared pair, it	retain both the electron of the shared
	is called homolytic fission.	pair, it is called heterolytic fission.
2.	electrons in the bonding pair "move" independently :Br + Br:	electrons in the bonding pair "move" ⊖ : Br - Br: + Br: Br: + Br:
3.	It is denoted by half arrow i.e fish hook	It is denoted by full arrow denotes
	arrow denotes sharing of one electron	sharing of both electron by one atom.
	each.	
4.	Rate of the reaction is fast.	It takes place in moderate rate.
5.	Formation of Free radicals takes place	lons are formed in this reaction with
	which are highly reactive	most electronegative and
		electropositive atom

12. (a) Discuss Optical Isomerism with special reference to tartaric acid:

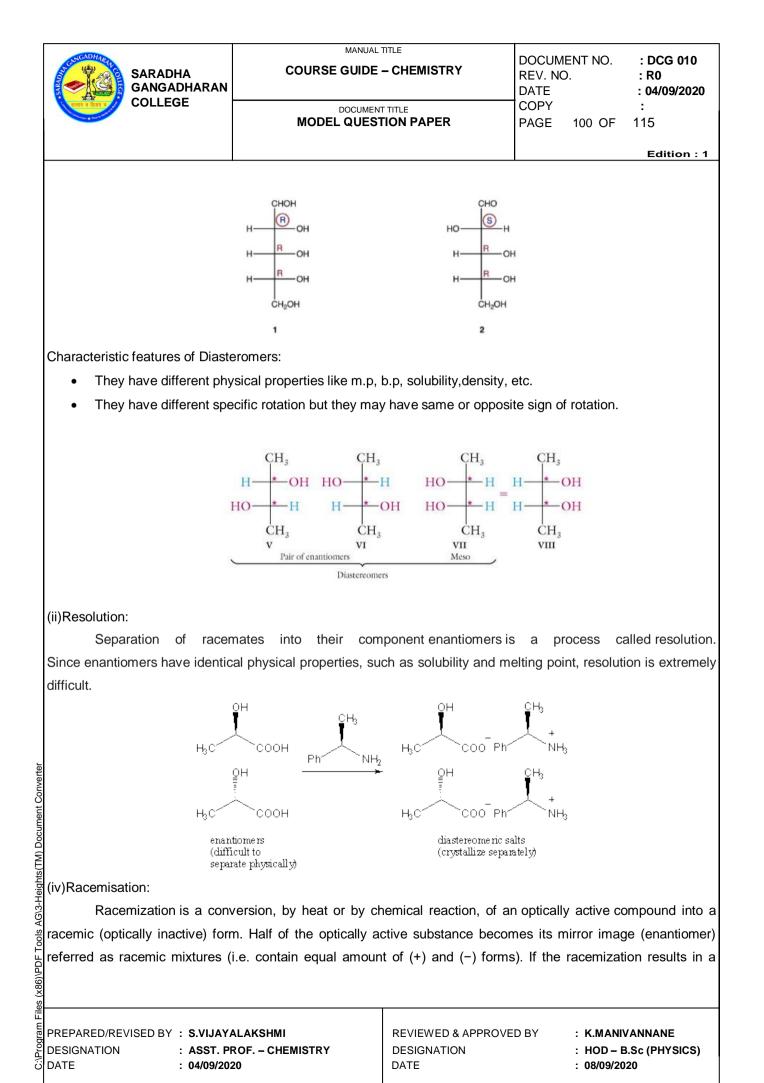
Tartaric acid contains two asymmetric carbon atoms. The four different forms of Tartaric acid are shown below: Two of them are optically active and two are optically inactive. The optically active forms are related to each other as an object to its mirror image i.e., they are enantiomers.


(x86)\PDF Tools AG\3-Heights(TM) Document Converter

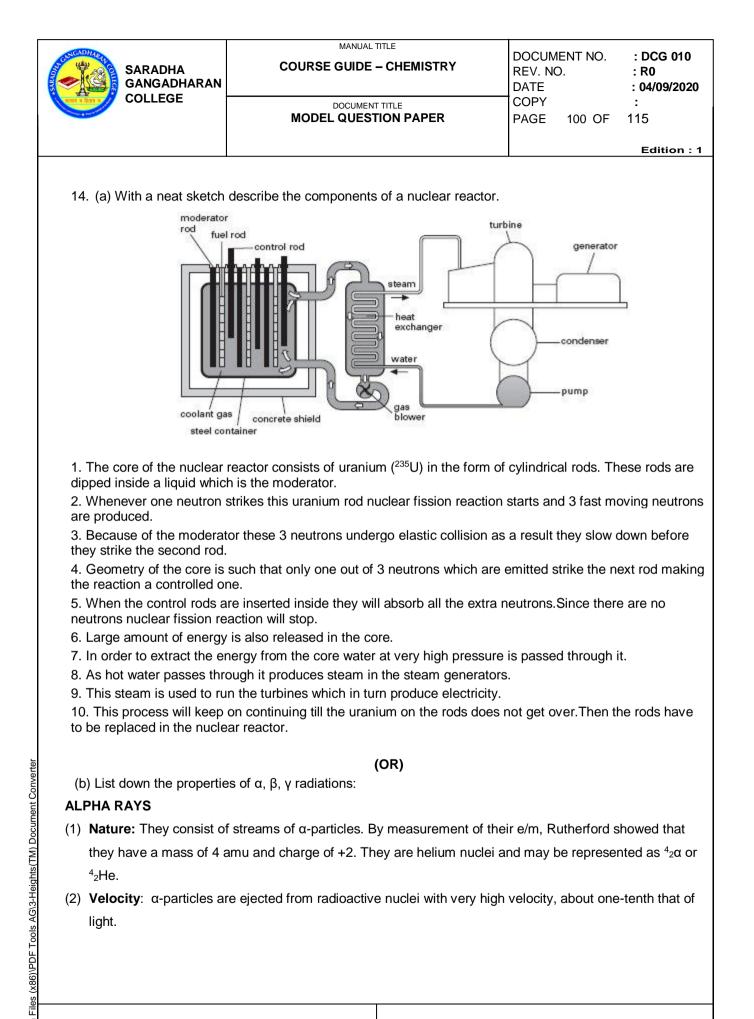
Files /

Program

ċ


: K.MANIVANNANE

م


DATE

: K.MANIVANNANE

				1	
	SARADHA GANGADHARAN		AL TITLE E – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 010 : R0 : 04/09/2020
अधिय सत्याय च हिताय च	COLLEGE		ENT TITLE	COPY	:
		MODEL QUE	STION PAPER	PAGE 100 OF	115
					Edition : 1
mixture wher	e the D and L ena	intiomers are present i	n equal quantities, the	resulting sample i	s described as
a racemic mix	ture or a racemate	е.			
		CH3	CH3		
		н С.		` ⊔	
		coc	н ноос	п	
		(R) - Lactic Acid	(S) - Lactic Aci	id	
		50%	+ 50%		
13 <i>(</i> a)	Define the followin		Racemic Mixture		
(i)	Mole: Mole is the	•	ce that contains as many he ¹² C isotope.	y particles or entities	s as there are
(ii)			as the ratio of number o s of the solution multiplie	•	
(iii)			at expresses the numbe reater substance compr	. ,	•
(iv)			as 1ppb, which is equal t base -10 logarithm (log)		ation.
	Mathematically	it may be expressed as	6		
		pH = – log10 [H	+],		
	w	here [H+] is the concer	ntration of hydrogen ions	s in moles per litre.	
(v)		uffer: Physiological buff pH of a bodily fluid.	ers are chemicals used	by the body to prev	ent large
	changes in the		(OR)		
			()		
(b)De	erive the Henderso	n-Hasselbalch equation	n of buffer solution.		
··					
	N EQUATION:				
•			he dissociation constar	nt, Ka, of the weal	k acid and the
	s of the acid and t		, be represented as		
	HA - HA	the weak acid, HA, may	o representeu as		
PREPARED/RE\	/ISED BY : S.VIJAY/	ALAKSHMI	REVIEWED & APPROVE	ED BY : K.MANI N	/ANNANE
DESIGNATION DATE	: ASST. PF : 04/09/202	ROF. – CHEMISTRY 20	DESIGNATION DATE	: HOD – E : 08/09/20	3.Sc (PHYSICS) 20

SARADHA GANGADHARAN	MANUAL T COURSE GUIDE -	CHEMISTRY	DOCUMENT NO. : D REV. NO. : R DATE : 04	
COLLEGE	DOCUMENT MODEL QUEST		COPY PAGE 100 OF	: 115
				Edition : 1
Ka	[H⁺] [A⁻]			
Ka =	[HA]			
Or [H ⁺] =	[HA] Ka (1)			
The weak acid is only slightly of	[A] -	tion is further depress	od by the addition	of the solt (N
A^-) which provides A^- ions (Co		-	-	
nearly equal to the initial conce		-		
the initial concentration of the s		•		
	·	,		
[H+]=Ka >	< [acid] / [salt] (2)	1		
where [acid] is the initial conce	entration of the added acid	and [salt] that of the s	alt used. Taking r	negative logs
both sides of the equation (2), v	we have			
-log [H ⁺] = -log	Ka – log [acid] / [salt]	(3)		
But –log [H ⁺] = p	H and –log Ka = pKa			
Thus from (3) we have				
pH = pKa – log [a	acid]/[salt]			
= pKa + log [s	alt] / [acid]			
Hence, pH = pKa +	log [salt] / [acid]			
This relationship is called the H	lenderson-Hasselbalch equ	ation or simply Hende	rson equation.	
In a similar way, the Henderso	n-Hasselbalch equation for	r a basic buffer can be	derived. This can	be stated as :
pOF	H = pKb + log [salt] / [base	e]		
PREPARED/REVISED BY : S.VIJAY DESIGNATION : ASST. P DATE : 04/09/20		REVIEWED & APPROVED		VANNANE
INCIANLU/NEVIGED DI . G.VIJAT		NEVIEWED & AFFRUVEL	. R.IVIANI	
DESIGNATION : ASST. P	ROF. – CHEMISTRY	DESIGNATION	: HOD – E	3.Sc (PHYSICS)

م

ċ

: K.MANIVANNANE

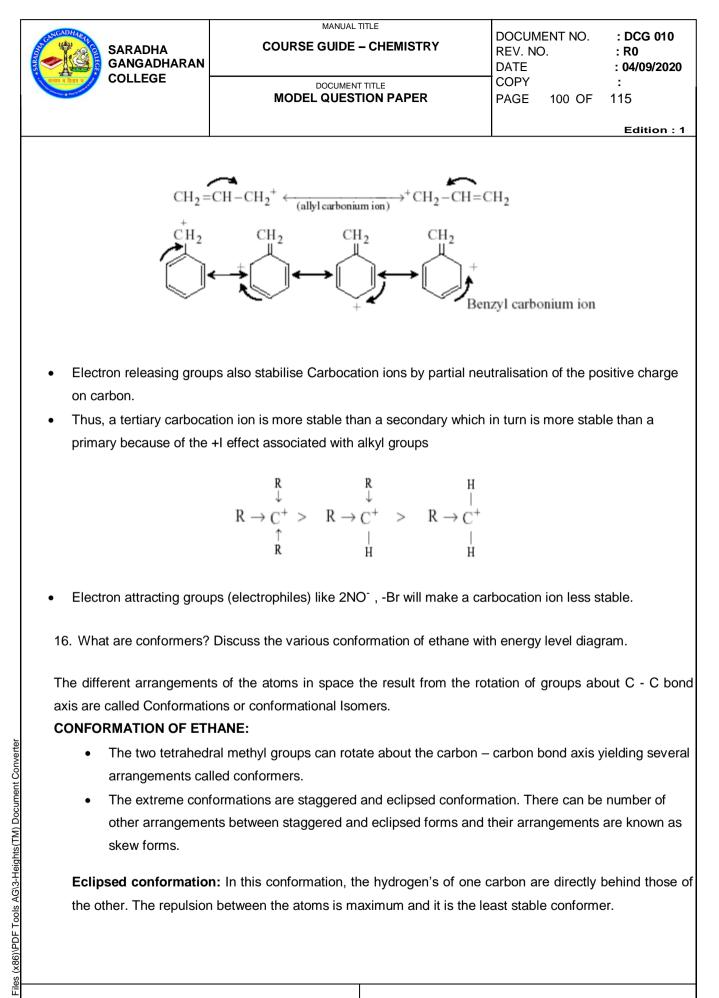
- (3) Penetrating power: Because of their charge and relatively large size, α-particles have very little power of penetration through matter. They are stopped by a sheet of paper, 0.01 mm thick aluminium foil or a few centimetres of air.
- (4) Ionisation: They cause intense ionisation of a gas through which they pass. On account of their high velocity and attraction for electrons, α-particles break away electrons from gas molecules and convert them to positive ions.

BETA RAYS

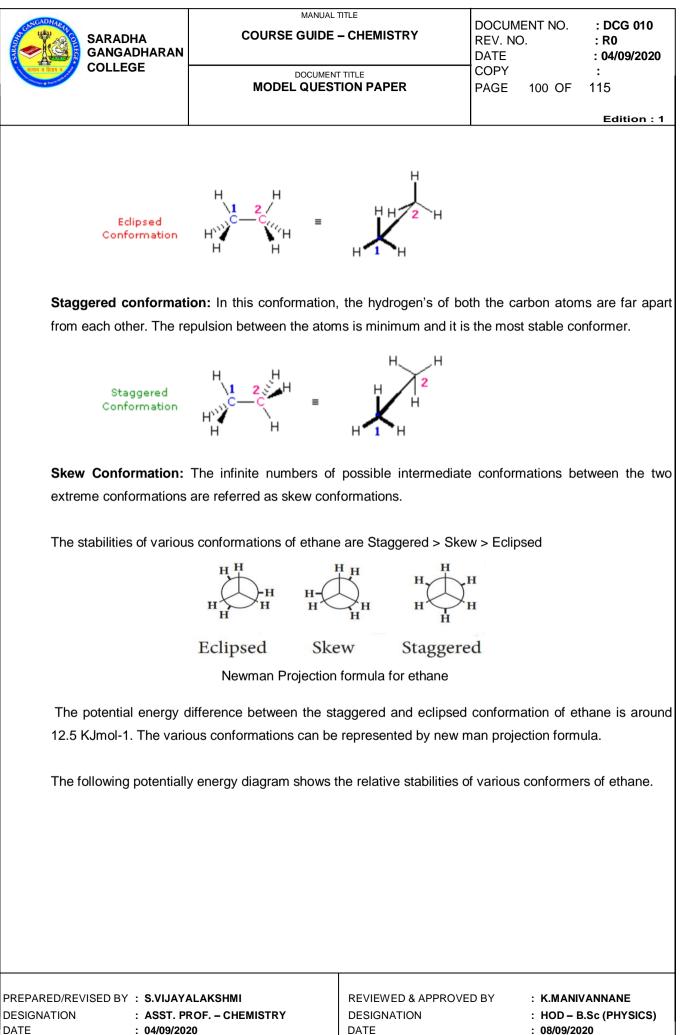
- (1) **Nature:** They are streams of β -particles emitted by the nucleus. From their deflection electric and magnetic fields, Becquerel showed that β -particles are identical with electrons. They have very small mass (1/1827 amu) and charge of -1. A β -particle is symbolized as ${}^{0}_{-1}\beta$ or ${}^{0}_{-1}e$.
- (2) **Velocity**: They travel about 10 times faster than α -particles. Their velocity is about the same as of light.
- (3) Penetrating power: β-Particles are 100 times more penetrating in comparison to α-particles. This is so because they have higher velocity and negligible mass. β-particles can be stopped by about 1 cm thick sheet of aluminium or 1 m of air.
- (4) Ionisation: The ionisation produced by β-particles in a gas is about one-hundredth of that of α-particles. Though the velocity of β-particles is higher but the mass being smaller, their kinetic energy is much less than α-particles. Hence they are poor ionisers.

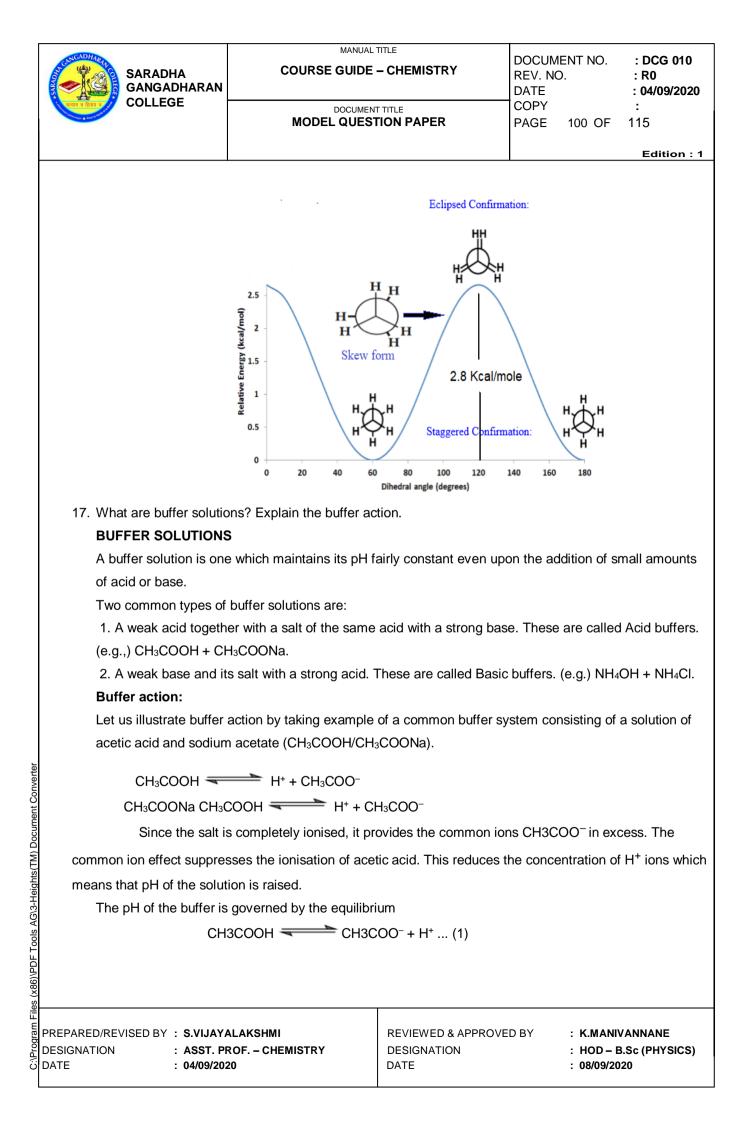
GAMMA RAYS

- (1) **Nature:** Unlike α and β -rays, they do not consist of particles of matter. γ -Rays are a form of electromagnetic radiation of shorter wavelength than X-rays. They could be thought of as high-energy photons released by the nucleus during α or β -emissions. They have no mass or charge and may be symbolized as ${}^{0}_{0}\gamma$.
- (2) **Velocity**: Like all forms of electromagnetic radiation, γ -rays travel with the velocity of light.
- (3) Ionisation: Their ionising power is very weak in comparison to α- and β-particles. A γ-photon displaces an electron of the gas molecule to yield a positive ion. Since the chances of photon-electron collisions are small, γ-rays are weak ionisers.
- (4) Penetrating power: Because of their high velocity and non-material nature, γ-rays are most penetrating. They cannot be stopped even by a 5 cm thick sheet of lead or several metres thick layer of concrete.


(x86)\PDF Tools AG\3-Heights(TM) Document Converter

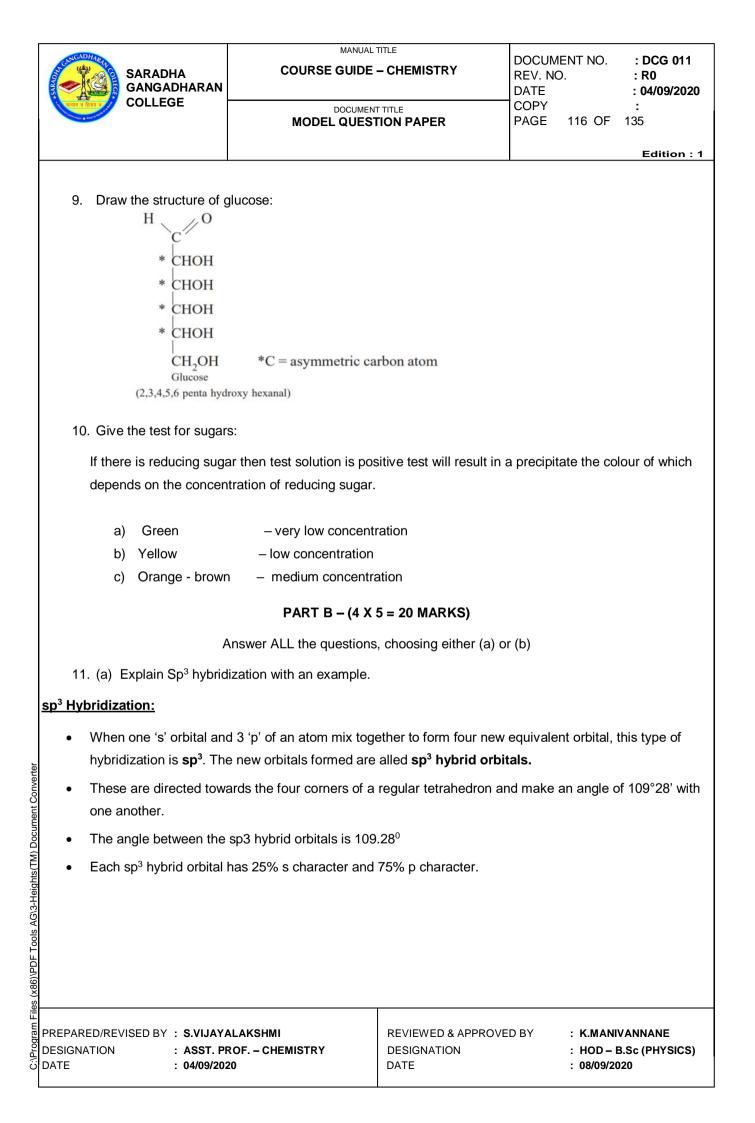
م

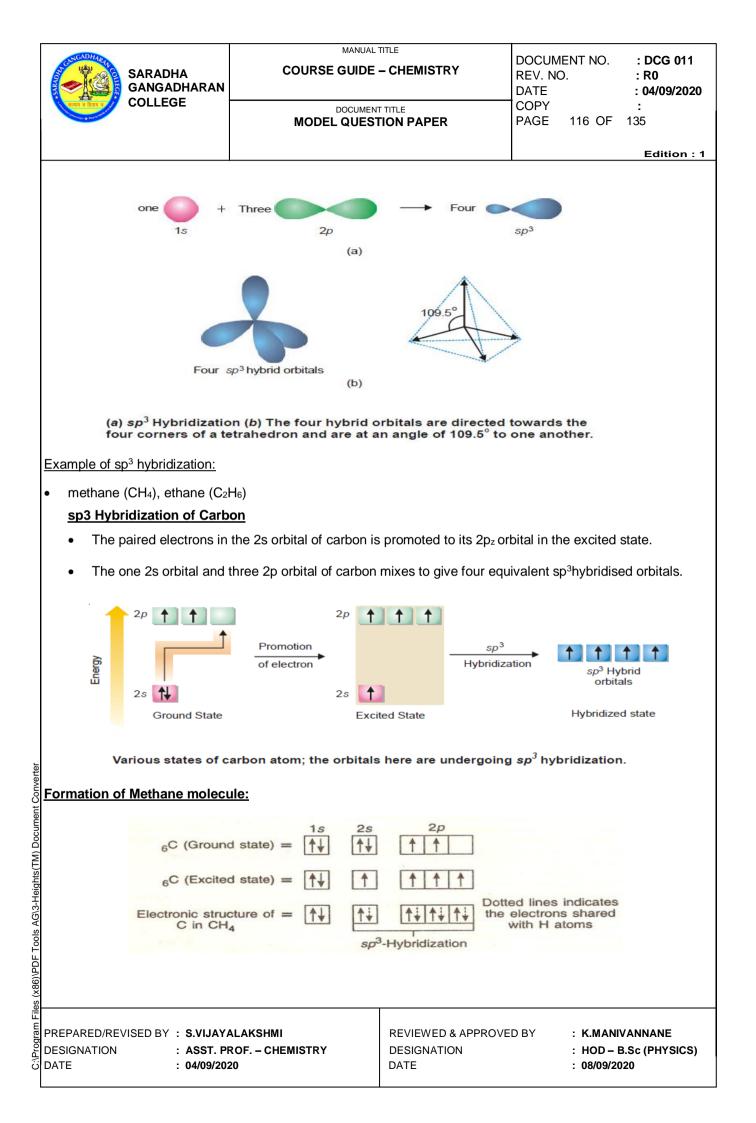

ċ

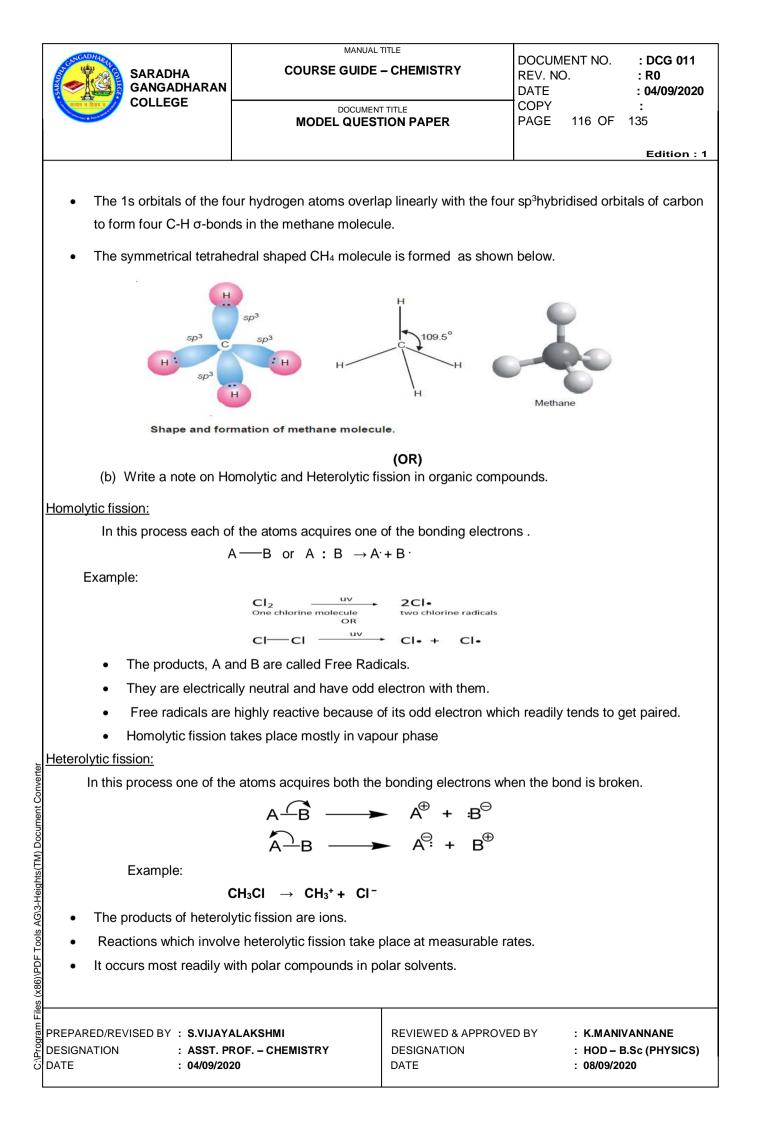

: K.MANIVANNANE : HOD – B.Sc (PHYSICS)

SARADHA GANGADHARAN COLLEGE		CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 010 : R0 : 04/09/2020
COLLEGE	DOCUMENT MODEL QUEST		COPY PAGE 100 OF	: 115
				Edition : 1
		 - C (2 X 10 =20) any TWO questions. 		
15. What are carbocations			ndary and tertiary	carbocations
	cations): Organic ions wh			
carboniumions or carbo				
They are formed by hete	erolytic fission.			
	 → − C⁺ +:Z [−]			
- C:Z	$\rightarrow - C^+ + :Z^-$			
I	 Carbocation ion			
where Z is more electro	negative atom than carbo	n.		
	amed after the parent al		the words Carboo	cation ions. F
-	Н	Н	Н	
ł	H CH ₃ :	C (+) CH	(+)	
	hyl carbonium and Ethyl carbo		1Carbonium ion	
	– (primary 1°) CH3	(sec	condary 2°)	
		tyl Carbonium ion (tertiary)	3°)	
Stability of Carbocation lons:				
The stability of Carboca	tion ion is influenced by b	oth resonance and ind	uctive effect.	
For example the allyl an	d benzyl Carbocation ion	s are much more stable	e than propyl Carb	ocation ions.
	arbocation ions can be sta	abilised by resonance, l	out propyl Carboca	ation ion has I
resonance forms.				

: K.MANIVANNANE : HOD - B.Sc (PHYSICS)

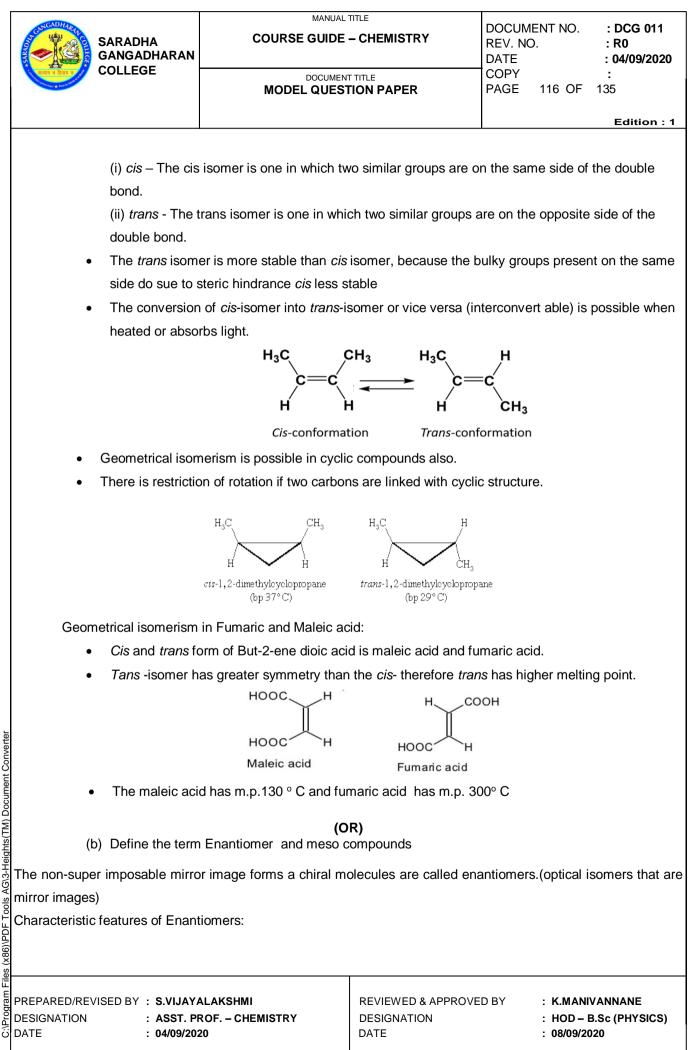

_				1	
	SARADHA GANGADHARAN			DOCUMENT I REV. NO. DATE	NO. : DCG 010 : R0 : 04/09/2020
	COLLEGE	DOCUMENT MODEL QUEST		COPY PAGE 100	: OF 115
					Edition : 1
	The buffer solution ha	s a large excess of CH3C	OO [−] ions produced by	complete ioni	sation of sodium
	CH	I3COONa 룾 CH:	3COO⁻ + Na⁺ (2)		
C:\Program Files (x86)\PDF Tools AG\3-Heights(TM) Document Converter D 더 하	M acetic acid and 0.1 the buffer. On addition 0.01 mole HCl the pH pH and the changes in PH and the changes in PH 4.74 2.87 $CH_3COCHCCThe buffer scCH_3COCHCChas a higher18. (a) Outline the principlNeutron activation andto be analyzed are mainare then identified andduring neutron irradiatradionuclide providesThe basic equation for$	PH PONa CH ₃ COO COH CH ₃ COO CH CH ₃ COO CH CH CH CH CH CH CH CH CH CH	H of 4.74 (as show in f H changes from 4.74 f Obviously the buffer s marginal. H Buffer + Na The pH of bu upon addition or base (0.01 alysis. of elemental analysis i on with neutrons and t of a given neutron activity to the amount of its pa	the figure). The to 4.83, while solution main solution main aoH t Buffer ffer changes in of an acid (of mole NaOH). in which the e he induced ra vation product arent isotope.	er + HCI only slightly 0.01 moles)
C:\Program Files (x)	REPARED/REVISED BY : S.VIJAY DESIGNATION : ASST. P DATE : 04/09/20	ROF. – CHEMISTRY	REVIEWED & APPROVE DESIGNATION DATE	: H	.MANIVANNANE OD – B.Sc (PHYSICS) 8/09/2020


GAN	RADHA NGADHARA		MANUAL TITLE IRSE GUIDE – CHEMISTRY				REV. NO DATE	IENT NO. D.	. : DCG 010 : R0 : 04/09/2020
COL	COLLEGE MOD		DOCUMENT	TITLE FION PAPER	COPY PAGE	100 OF	: 115		
							Edition : 1		
where, V	N a weight	of element irradiat	ed, in gra	ms					
A = induc	ced activity	in disintegrations/s	sec at the	end of irradiation					
φ = flux c	of neutrons	used in the irradia	ition, in ne	eutrons/cm ² /sec					
σ = the a	activation cro	oss section for the	e nuclear r	eaction concerned,	in cm²				
f = fractio	onal abunda	ance of the particu	ular isotop	e of the element co	ncerned				
M = atom	nic weight o	f that element							
λ= the de	ecay consta	int of the induced r	radionuclio	de,in sec ⁻¹					
t = irradia	ation time, ii	n seconds							
(b) How are ra	adio isotope	es useful in the fiel	ld of medio	cine, agriculture and	d industry?				
• Agric	culture: Pla	ague control, food	conservat	tion, etc.					
• Art:	restoration	of art objects, veri	fication of	historic or artistic o	bjects, etc.				
• Arch	aeology: G	Geological event d	ating, etc.						
• Rese	earch: Univ	erse, industry, me	dicine, etc	C.					
DL	-								
• Phar	rmacology:	: The study of the	metabolis	m of drugs before th	hey are auth	norized for	public use.		
		-		-	-		-		
• Indu	stry and te	chnology: review		m of drugs before th als and welding in c	-		-		
• Indus proce	stry and te	echnology: review arch, etc.	ı of materi	als and welding in c	construction	, control of	f productive		
 Indus proce Medi 	stry and te esses, resea icine: Diag	echnology: review arch, etc. nosis and treatme	v of materi nt of disea	als and welding in c ases, sterilization of	products fr	, control of equently u	f productive sed in clinica		
 Indus proce Medi 	stry and te esses, resea icine: Diag	echnology: review arch, etc. nosis and treatme	v of materi nt of disea	als and welding in c	products fr	, control of equently u	f productive sed in clinical		
Indus proce Medi and s S.No	stry and te esses, resea icine: Diago surgical env ISC	echnology: review arch, etc. nosis and treatme	v of materi nt of disea adioactive	als and welding in c ases, sterilization of isotopes which are	products fr useful in m	, control of equently u	f productive sed in clinical		
Indus proce Medi and s S.No 1 1	stry and te esses, resea icine: Diago surgical env ISC H ³	echnology: review arch, etc. nosis and treatmen vironments, etc. Ra DTOPES Tritium	v of materi nt of disea adioactive Measure	als and welding in c ases, sterilization of isotopes which are water content of th	products fr useful in m	, control of equently u	f productive sed in clinical		
Indus proce Medi and s S.No 1 1 2 6	stry and te esses, resea icine: Diago surgical env ISC H ³ 5 C ¹¹	echnology: review arch, etc. nosis and treatmen vironments, etc. Ra	of materi nt of disea adioactive Measure Brain sca	als and welding in c ases, sterilization of a isotopes which are a water content of th an	products fr useful in m	, control of equently u	f productive sed in clinical		
Indus proce Medi and s <u>S.No 1 1 2 6 3 6 } </u>	stry and te esses, reserved icine: Diago surgical environment ISC H^3 $_3C^{11}$ $_3C^{14}$	echnology: review arch, etc. nosis and treatmen vironments, etc. Ra DTOPES Tritium Carbon - 11 Carbon - 14	of materi nt of disea adioactive Measure Brain sca Radio im	als and welding in c ases, sterilization of isotopes which are water content of th an	products fr useful in m	, control of equently u	f productive sed in clinical		
 Industry processor Mediand stands S.No 1 1 2 6 3 6 4 80 	stry and te esses, resea icine: Diago surgical env ISC H^3 $5C^{11}$ $5C^{14}$ $5C^{14}$ 0 Hg ¹⁹⁷	echnology: review arch, etc. nosis and treatmen vironments, etc. Ra DTOPES Tritium Carbon - 11 Carbon - 14 Mercury - 197	of materi nt of disea adioactive Measure Brain sc Radio im Kidney s	als and welding in c ases, sterilization of a isotopes which are water content of th an munology scan	products fr useful in m	, control of equently u	f productive sed in clinical		
 Industry processor Mediand stands S.No 1 1 2 6 3 6 4 84 5 15 	stry and te esses, reserved icine: Diago surgical env ISC H^3 $_{3}C^{11}$ $_{5}C^{14}$ $_{0}Hg^{197}$ $_{5}P^{32}$	echnology: review arch, etc. nosis and treatmen vironments, etc. Ra DTOPES Tritium Carbon - 11 Carbon - 14 Mercury - 197 Phosphorous-32	of materi nt of disea adioactive Measure Brain sc Radio im Kidney s Detectio	als and welding in of ases, sterilization of isotopes which are water content of th an munology scan n of eye tumours	products fr useful in m	, control of equently u	f productive sed in clinical		
 Industry processor Mediand stands S.No 1 1 2 6 3 6 4 80 5 18 6 2 	stry and te esses, resea icine: Diago surgical env ISC H^3 $5C^{11}$ $5C^{14}$ 0 Hg ¹⁹⁷ $5P^{32}$ $26Fe^{59}$	echnology: review arch, etc. nosis and treatmen vironments, etc. Ra DTOPES Tritium Carbon - 11 Carbon - 14 Mercury - 197 Phosphorous-32 Iron - 59	of materi nt of disea adioactive Measure Brain sc Radio im Kidney s Detectio Diagnos	als and welding in c ases, sterilization of a isotopes which are water content of th an munology scan n of eye tumours is of anaemia	products fr useful in m	, control of equently u	f productive sed in clinica		
 Industry processor Mediand stands S.No 1 1 2 6 3 6 4 80 5 18 6 2 	stry and te esses, reserved icine: Diago surgical env ISC H^3 $_{3}C^{11}$ $_{5}C^{14}$ $_{0}Hg^{197}$ $_{5}P^{32}$	echnology: review arch, etc. nosis and treatmen vironments, etc. Ra DTOPES Tritium Carbon - 11 Carbon - 14 Mercury - 197 Phosphorous-32	of materi nt of disea adioactive Measure Brain sc Radio im Kidney s Detectio Diagnos	als and welding in of ases, sterilization of isotopes which are water content of th an munology scan n of eye tumours	products fr useful in m	, control of equently u	f productive sed in clinica		
 Industry processor Mediand stands S.No 1 1 2 6 3 6 4 80 5 18 6 2 	stry and te esses, resea icine: Diago surgical env ISC H^3 $5C^{11}$ $5C^{14}$ 0 Hg ¹⁹⁷ $5P^{32}$ $26Fe^{59}$	echnology: review arch, etc. nosis and treatmen vironments, etc. Ra DTOPES Tritium Carbon - 11 Carbon - 14 Mercury - 197 Phosphorous-32 Iron - 59	of materi nt of disea adioactive Measure Brain sc Radio im Kidney s Detectio Diagnos	als and welding in c ases, sterilization of a isotopes which are water content of th an munology scan n of eye tumours is of anaemia	products fr useful in m	, control of equently u	f productive sed in clinica		
 Industry processor Mediand stands S.No 1 1 2 6 3 6 4 80 5 18 6 2 	stry and te esses, resea icine: Diago surgical env ISC H^3 $5C^{11}$ $5C^{14}$ 0 Hg ¹⁹⁷ $5P^{32}$ $26Fe^{59}$	echnology: review arch, etc. nosis and treatmen vironments, etc. Ra DTOPES Tritium Carbon - 11 Carbon - 14 Mercury - 197 Phosphorous-32 Iron - 59	of materi nt of disea adioactive Measure Brain sc Radio im Kidney s Detectio Diagnos	als and welding in c ases, sterilization of a isotopes which are water content of th an munology scan n of eye tumours is of anaemia	products fr useful in m	, control of equently u	f productive sed in clinica		
 Industry processor Mediand stands S.No 1 1 2 6 3 6 4 80 5 18 6 2 	stry and te esses, resea icine: Diago surgical env ISC H^3 $5C^{11}$ $5C^{14}$ 0 Hg ¹⁹⁷ $5P^{32}$ $26Fe^{59}$	echnology: review arch, etc. nosis and treatmen vironments, etc. Ra DTOPES Tritium Carbon - 11 Carbon - 14 Mercury - 197 Phosphorous-32 Iron - 59	of materi nt of disea adioactive Measure Brain sc Radio im Kidney s Detectio Diagnos	als and welding in c ases, sterilization of a isotopes which are water content of th an munology scan n of eye tumours is of anaemia	products fr useful in m	, control of equently u	f productive sed in clinica		
 Industry processor Mediand stands S.No 1 1 2 6 3 6 4 80 5 18 6 2 	stry and te esses, resea icine: Diago surgical env ISC H^3 $5C^{11}$ $5C^{14}$ 0 Hg ¹⁹⁷ $5P^{32}$ $26Fe^{59}$	echnology: review arch, etc. nosis and treatmen vironments, etc. Ra DTOPES Tritium Carbon - 11 Carbon - 14 Mercury - 197 Phosphorous-32 Iron - 59	of materi nt of disea adioactive Measure Brain sc Radio im Kidney s Detectio Diagnos	als and welding in c ases, sterilization of a isotopes which are water content of th an munology scan n of eye tumours is of anaemia	products fr useful in m	, control of equently u	f productive sed in clinica		
 Industry processor Mediand stands S.No 1 1 2 6 3 6 4 80 5 18 6 2 	stry and te esses, resea icine: Diago surgical env ISC H^3 $5C^{11}$ $5C^{14}$ 0 Hg ¹⁹⁷ $5P^{32}$ $26Fe^{59}$	echnology: review arch, etc. nosis and treatmen vironments, etc. Ra DTOPES Tritium Carbon - 11 Carbon - 14 Mercury - 197 Phosphorous-32 Iron - 59	of materi nt of disea adioactive Measure Brain sc Radio im Kidney s Detectio Diagnos	als and welding in c ases, sterilization of a isotopes which are water content of th an munology scan n of eye tumours is of anaemia	products fr useful in m	, control of equently u	f productive sed in clinica		
 Industry processor Mediand stands S.No 1 1 2 6 3 6 4 80 5 18 6 2 	stry and te esses, resea icine: Diago surgical env ISC H^3 $5C^{11}$ $5C^{14}$ 0 Hg ¹⁹⁷ $5P^{32}$ $26Fe^{59}$	echnology: review arch, etc. nosis and treatmen vironments, etc. Ra DTOPES Tritium Carbon - 11 Carbon - 14 Mercury - 197 Phosphorous-32 Iron - 59	of materi nt of disea adioactive Measure Brain sc Radio im Kidney s Detectio Diagnos	als and welding in c ases, sterilization of a isotopes which are water content of th an munology scan n of eye tumours is of anaemia	products fr useful in m	, control of equently u	f productive sed in clinica		
 Industry processor Mediand stands S.No 1 1 2 6 3 6 4 80 5 18 6 2 	stry and te esses, resea icine: Diago surgical env ISC H^3 $5C^{11}$ $5C^{14}$ 0 Hg ¹⁹⁷ $5P^{32}$ $26Fe^{59}$	echnology: review arch, etc. nosis and treatmen vironments, etc. Ra DTOPES Tritium Carbon - 11 Carbon - 14 Mercury - 197 Phosphorous-32 Iron - 59	of materi nt of disea adioactive Measure Brain sc Radio im Kidney s Detectio Diagnos	als and welding in c ases, sterilization of a isotopes which are water content of th an munology scan n of eye tumours is of anaemia	products fr useful in m	, control of equently u	f productive sed in clinica		
 Industry processor Mediand stands S.No 1 1 2 6 3 6 4 80 5 18 6 2 	stry and te esses, resea icine: Diago surgical env ISC H^3 $5C^{11}$ $5C^{14}$ 0 Hg ¹⁹⁷ $5P^{32}$ $26Fe^{59}$	echnology: review arch, etc. nosis and treatmen vironments, etc. Ra DTOPES Tritium Carbon - 11 Carbon - 14 Mercury - 197 Phosphorous-32 Iron - 59	of materi nt of disea adioactive Measure Brain sc Radio im Kidney s Detectio Diagnos	als and welding in c ases, sterilization of a isotopes which are water content of th an munology scan n of eye tumours is of anaemia	products fr useful in m	, control of equently u	f productive sed in clinica		
 Industry processor Mediand stands S.No 1 1 2 6 3 6 4 80 5 18 6 2 	stry and te esses, resea icine: Diago surgical env ISC H^3 $5C^{11}$ $5C^{14}$ 0 Hg ¹⁹⁷ $5P^{32}$ $26Fe^{59}$	echnology: review arch, etc. nosis and treatmen vironments, etc. Ra DTOPES Tritium Carbon - 11 Carbon - 14 Mercury - 197 Phosphorous-32 Iron - 59	of materi nt of disea adioactive Measure Brain sc Radio im Kidney s Detectio Diagnos	als and welding in c ases, sterilization of a isotopes which are water content of th an munology scan n of eye tumours is of anaemia	products fr useful in m	, control of equently u	f productive sed in clinica		
 Industry processor Mediand stands S.No 1 1 2 6 3 6 4 80 5 18 6 2 	stry and te esses, resea icine: Diago surgical env ISC H^3 $5C^{11}$ $5C^{14}$ 0 Hg ¹⁹⁷ $5P^{32}$ $26Fe^{59}$	echnology: review arch, etc. nosis and treatmen vironments, etc. Ra DTOPES Tritium Carbon - 11 Carbon - 14 Mercury - 197 Phosphorous-32 Iron - 59	of materi nt of disea adioactive Measure Brain sc Radio im Kidney s Detectio Diagnos	als and welding in c ases, sterilization of a isotopes which are water content of th an munology scan n of eye tumours is of anaemia	products fr useful in m	, control of equently u	f productive sed in clinical		
 Industry processor Mediand stands S.No 1 1 2 6 3 6 4 80 5 18 6 2 	stry and te esses, reserved icine: Diago surgical environment BC^{11} C^{14} C^{14} C^{14} C^{14} C^{14} C^{14} C^{14} C^{14} C^{14} C^{14} C^{14} C^{14} C^{14} C^{14} C^{14} C^{14} C^{12} C	echnology: review arch, etc. nosis and treatmen vironments, etc. Ra DTOPES Tritium Carbon - 11 Carbon - 14 Mercury - 197 Phosphorous-32 Iron - 59 Cobalt – 60	v of materi nt of disea adioactive Measure Brain sca Radio im Kidney s Detectio Diagnos Treatme	als and welding in c ases, sterilization of a isotopes which are water content of th an munology scan n of eye tumours is of anaemia	construction products from useful in m USES ne body	equently unedicine Iso	f productive sed in clinica		


CADIN.	MANUAL 1	ITLE		
SARADHA GANGADHARAN	COURSE GUIDE -	- CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 011 : R0 : 04/09/2020
COLLEGE	DOCUMENT MODEL QUEST		COPY PAGE 116 OF	: 135
				Edition : 1
	B.Sc. DEGREE I NOVEMBER / DE Third se Phys Allied: CHE (COMMOM FOR / (From 2017 -	ECEMBER 2018. mester sics MISTRY –I ALL BRANCHES)		
Time: 3 hrs		•	num: 60 marks	
	PART A – (1 Answer ALL tł			
1. Write the structure form (a) 4-ethyl-3-methyl-1 CH3-CH2-CH - C C ₂ H ₅ CH	-hexene (b) 2-pei CH-CH=CH2	ntyne CH3-CH2-C= C-CH -	2	
2 Write the UIDAC norm				
2. Write the IUPAC name (a) CH3 – CH2 – CH	. .	CH3 – CH2 –CH- CH- 	СНЗ	
		Br Br		
2-Pentene	2,3-d	ibromo pentane		
3. What are the types of	solution?			
	dissolution of the solute in olution, unsaturated and s		can be categorized	
	u <i>tion</i> comprises a large extra solute will crystalliz		a temperature whe	rein it will be
	on is a solution in which	a solvent is capable o	of dissolving any mo	ore solute at a
 given temperature. A saturated solution cal solute at a given temperature 	n be defined as a solution rature.	in which a solvent is r	not capable of dissol	ving any more
4. Define the term pH. It is defined as the	negative of the base -10	logarithm (log) of the I	H+ concentration. M	athematically
it may be expresse	ed as			
N3-Hei	pH = – log10 [H+],			
Given temperature. A saturated solution can solute at a given temperature. A saturated solution can solute at a given temperature. A solution can it may be expressed where Besignation solution can solute at a given temperature. A solution can solute at a given temper	e [H+] is the concentratior	n of hydrogen ions in n	noles per litre.	
الله E PREPARED/REVISED BY : S.VIJAYA DESIGNATION : ASST. PF O DATE : 04/09/202	ROF. – CHEMISTRY	REVIEWED & APPROVE DESIGNATION DATE		Sc (PHYSICS)

SARADHA GANGADHARAN COLLEGE	MANUAL TITLE COURSE GUIDE – CH	IEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 011 : R0 : 04/09/2020
	DOCUMENT TITLE MODEL QUESTION	-	COPY PAGE 116 OF	: 135
				Edition:1
5. Define the term molar Molarity:	ity, normality:			
	ost widely used units of conce esent in 1 liter of solution. Thu		oted by M. It is de	efined as no. c
Molarity = No. of r	noles of solute / Volume of sol	lution (in Litres)		
Normality:				
The number of gra	am or mole equivalents of solut f gram equivalents of solute /V			
	r solution with an example: s one which maintains its pH fa	airly constant even	upon the addition	of small
amounts of acid o	r base.			
Two common type	es of buffer solutions are:			
1. A weak acid to	gether with a salt of the same	acid with a strong b	base. These are ca	alled Acid
buffers. (e.g.,) CH	3COOH + CH3COONa.			
2. A weak base a	nd its salt with a strong acid.	These are called Ba	sic buffers. (e.g.) I	NH₄OH +
NH ₄ Cl.				
7. Define half-life period:				
	to disintegrate one half of any			• • • •
-	d (t ¹ / ₂) of a radioactive substan		of initial concentrat	ion. It depends
only on the disinte	egration constant (λ) of the rad	ioactive element.		
	$\left(t^{1/_{2}} = \frac{0.693}{\lambda}\right)$			
Average life, τ (7	Tau) = $\frac{1}{\lambda} = \frac{t^{1/2}}{0.693} = 1.44 t^{1/2}$	1		
8. What are polysacchar	ides? Give example:			
Example: starch cel	lulose and glycogen (hom	opolysaccharides):	hvaluronic acid	and henari
(heteropolysaccharides).	alose and grybogen (nom	opolysaconanaco),		and nopun
				· • • • • • • • • -

: K.MANIVANNANE : HOD - B.Sc (PHYSICS)

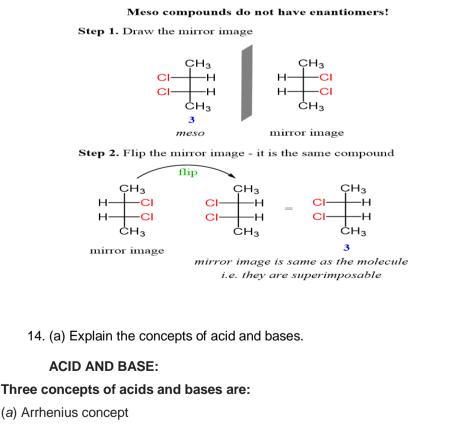

SARADHA GANGADHARAN COLLEGE	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. : DCG 011 REV. NO. : R0 DATE : 04/09/2020
COLLEGE	DOCUMENT TITLE MODEL QUESTION PAPER	COPY : PAGE 116 OF 135
		Edition : 1
(a) Explain: Dipole m	oment in organic molecules.	
The dipole moment (µ) is t	he product of the magnitude of the charg	jes and the distance between the
charges.		
Dipole Momer	nt = Charge x Distance	
	$\mu = Q * R$ where, Q=charge & R= Distant	nce between the two bonds
Note: i) Greater the charge	e larger will be the dipole moment	
ii) Smaller is the dista	ance lesser will be the dipole moment	
Some examples of dipo	ble moment in organic molecules are give	e below:
The charge separation	n due to the difference in electronegation	vity and formation of partial positive ar
partial negative is called bo	ond dipole. A chemical bond with c	harge separation due to difference
electronegativity is a polar cova	alent bond.	
n Formaldehyde oxygen is me	ore electronegative than carbon so Car	bon –oxygen bond as a polarity. Oxyge
as a partial negative charge a	nd carbon has a partial positive charge a	and bond is dipole.
	ң н	
	$C=0$ $\delta \oplus C=$	ΟδΘ
	н н ъ	= delta
Symmetrical molecules are mo	stly have net dipole moment is zero. Son	
	и Р-	
	H Br	
	ਨੂੰ ਨੂੰ ਸ–	−с≡с−н
Н	∐ H Br Br	
	H Br	
•	$ \mu = 0 \qquad \mu = 0 \\ metrical Symmetrical S$	$\mu = 0$ Symmetrical
	lecule molecule	molecule
	(OR)	
(b) Write note on Hyd		
IYDROGEN BONDING:		
An electrostatic attract	tive force between the covalent bond	led H- atom of one molecule and a

The size of electronegative atom should be small. •

: K.MANIVANNANE : HOD - B.Sc (PHYSICS)

SARADHA GANGADHARAN COLLEGE			DOCUMENT NO. REV. NO. DATE	: DCG 011 : R0 : 04/09/2020
COLLEGE	DOCUMENT MODEL QUEST		COPY PAGE 116 OF	: 135
				Edition : 1
	nd is represented by Dotte	, , ,		
 Covalent bond is repres δ + δ⁻ 	sented by Solid lines(—)		
For Example : F—H				
• H bond is a weaker as	compare to a covalent bo	nd.		
	5-10 kcal/mol, as compar		nd energy of 50-10	0 kcal/mol but it
Ŭ	Waals attraction which is	< 1 kcal/mole.		
i) High electronegativity of	the atom bonded to hydr	ngen atom so that hon	d is sufficiently po	ar
ii) Small size of the ator		0		
effectively				.g
iii) If the atom bonded to h	nydrogen has low value of	electronegativity and	or large atomic size	ze, dipole-dipole
interactions are not strong	enough to allow effective	hydrogen bonding.		
Types of hydrogen bonding:				
There are two types of hydroge	,	,		-
(i) Intermolecular H-bonding:				
combine together to form a dim				
In the solid state, hydrogen flue as shown below: Therefore, hydrogen flue		•	es associated by	hydrogen bonds
		\sum_{r}		
	Н Н	H	Н	
ē		Hyd	rogen bonding	
		,o	н—о,	
	2	СН3-С	с-сн3	
лощ но но	N N	`О—Н	O'	
p-nitrophenol			en bonding	
(intermolecular hydrogen bonding	g)	Acetic ac	id and dimer	
ල් ග ් Intermolecular hydrogen bor	nding in	Dimeric str	ucture of acetic ac	id
p-nitrophenol		Dimene su		
se (x86				
HO P-nitrophenol (intermolecular hydrogen bonding Prepared/REVISED BY : S.VIJAY/ DESIGNATION : ASST. Pl DATE : 04/09/20		REVIEWED & APPROVE		IVANNANE
DESIGNATION : ASST. P	ROF. – CHEMISTRY	DESIGNATION	: HOD –	B.Sc (PHYSICS)
ن DATE : 04/09/20	20	DATE	: 08/09/2	020

SARADHA GANGADHARAN COLLEGE		- CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 011 : R0 : 04/09/2020
	MODEL QUEST		COPY PAGE 116 OF	: 135
				Edition :
Chelation.	nding: ccurs within two atoms of t conding frequently occurs e molecule.	he same molecule and	leads to a phenor	menon called
 The large acidity is due Intramolecular H-bondi 13. (a) Explain geometrica 	boiling decreases the boili to the intramolecular H- k ng is weaker than intermo l isomerism in organic com out of difference in the sp	ng point of the compou bonding which is capab lecular H-bonding. hpounds	Ind and also its so le of stabilising the	e salicylate ior
Rotation abou	t C=C is not possible at no	ormal conditions and he	ence the isomers a	are isolable.
	of rotation about the carb			
geometrical iso	omerism in alkenes.			
If different ato	ms or groups are bonded t	to the 'C=C' bond in a r	nolecule, more the	an one spatial
arrangement is	s possible. Few examples	are shown below which	n exists in two isor	neric forms.
H C=C	$H_{H}^{COOH} = H_{3}C_{COOH}$ $H_{Trans}^{H_{3}C} = C_{COOH}^{H_{3}C}$ $H_{Trans}^{H_{3}C} = C_{COOH}^{H_{3}C}$ $H_{Trans}^{H_{3}C} = C_{COOH}^{H_{3}C}$	H CI CI H M Mans-1,2-dichloroether	ne c/s-1,2-dichlor	∠H ⊂I roethene
	npounds are referred to as rms <i>ci</i> s and <i>trans</i> .	geometrical isomers a	nd are distinguish	ed from each
PREPARED/REVISED BY : S.VIJAY DESIGNATION : ASST. P DATE : 04/09/20	ROF. – CHEMISTRY	REVIEWED & APPROVED DESIGNATION DATE		IVANNANE B.Sc (PHYSICS)



SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 011 : R0 : 04/09/2020
COLLEGE	DOCUMENT TITLE MODEL QUESTION PAPER	COPY PAGE 116 OF	: 135 Edition : 1

- Enatiomers have the same physical properties (bp ,mp, Density, solubility, etc..)
- Enantiomers will rotate plane polarized light the same magnitude (α) but opposite directions (+ or -).
- A mixture of equal amounts of two enantiomers is called a racemic mixture (optically inactive). A racemic mixture is a 50:50 mixture of two enantiomers.
- It cannot be interconverted under ordinary conditions.
- They have different biological properties .E.g. (+) dextrose plays an important role in animal metabolism, whereas (-)-dextrose is not metabolized.
- A well know example is two isomers of Lactic acid (+ & -).

MESO COMPOUND

- Meso compound is a molecule with multiple stereocentres that is superimposable on its mirror image.
- Meso compounds are achiral compounds that have multiple chiral centres.
- Meso compounds are optically inactive.
- It has an internal symmetry plane that divides the compound in half.

(b) Bronsted-Lowry concept

AG\3-Heiahts(TM) Document Converter

Tools

VPDF

Files (x86)'

gram	PREPARED/REVISED BY DESIGNATION DATE	:	S.VIJAYALAKSHMI
Proc	DESIGNATION	:	ASST. PROF. – CHEMISTRY
:: S	DATE	:	04/09/2020

REVIEWED & APPROVED BY DESIGNATION DATE : K.MANIVANNANE

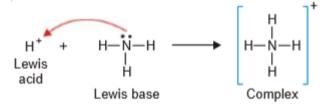
SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. : DCG 011 REV. NO. : R0 DATE : 04/09/2020
COLLEGE	DOCUMENT TITLE MODEL QUESTION PAPER	COPY : PAGE 116 OF 135
		Edition :
(c) Lewis concept		
ARRHENIUS CONCEPT:		
According to this concept, an acid	is a compound that releases H* ions in w	vater; and a base is a compound tha
releases OH ⁻ ions in water.		
For example, HCl is an Arrhenius a	acid and NaOH is an Arrhenius base.	
$HCI(aq) \rightarrow H^+$	(<i>aq</i>) + Cl⁻ (<i>aq</i>)	
$NaOH(aq) \to OH$	l⁻ (<i>aq</i>) + Na⁺ (<i>aq</i>)	
Limitations of Arrhenius Concer	ht	
(1) Free H ⁺ and OH ⁻ ions do not e		
(2) Limited to water only.		
(3) Some bases do not contain OH	-	
BRONSTED-LOWRY CONCEPT		
An acid is any molecule or	ion that can donate a proton (H ⁺)	
> A base is any molecule or	ion that can accept a proton	
An acid qualifying Bronsted-Lowry	concept is termed a Bronsted-Lowry aci	d or simply Bronsted acid
	concept is termed a Bronsted-Lowry bas	
Examples of Bronsted acids and		
-	CI gas dissolves in water, each HCI mole	cule donates a proton to a water
molecule to produce hydronium ior		·
		+] ⁺ + CI [−]
	Hydronium io	
Thus HCI gas is a Bronsted acid a	nd water that accepts a proton is a Brons	sted base.
(2) HCI and Ammonia, NH ₃ . HCI ga	as reacts with ammonia (NH_3) to form so	lid NH₄Cl.
	· · · · · · · · ·	1

HCI is a proton donor and hence a Bronsted acid, while NH3 is a proton acceptor and a Bronsted base.

H-o: + H-H H HCl is a proton donor and hence a Bronsted acid PREPARED/REVISED BY : S.VIJAYALAKSHMI DESIGNATION : ASST. PROF. – CHEMISTRY DATE : 04/09/2020

REVIEWED & APPROVED BY DESIGNATION DATE : K.MANIVANNANE

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 011 : R0 : 04/09/2020
COLLEGE	DOCUMENT TITLE	COPY	:
	MODEL QUESTION PAPER	PAGE 116 OF	135


Lewis concept

A Lewis acid is a positive ion (or) an electron deficient molecule and a Lewis base is an anion (or) neutral molecule with at least one lone pair of electrons.

According to Lewis theory, an acid is an electron-pair acceptor a base is an electron-pair donor. All cations or molecules short of an electron-pair act as Lewis acids and all anions or molecules having a lone electron-pair act as Lewis bases.

Examples of Lewis reactions

Between H⁺ and NH₃, Proton (H⁺) is a Lewis acid as it can accept an electron-pair. Ammonia molecule (: NH₃) has an electron-pair which it can donate and is a Lewis base. Thus the Lewis reaction between H⁺ and NH₃ can be written as:

• Derive Henderson equation:

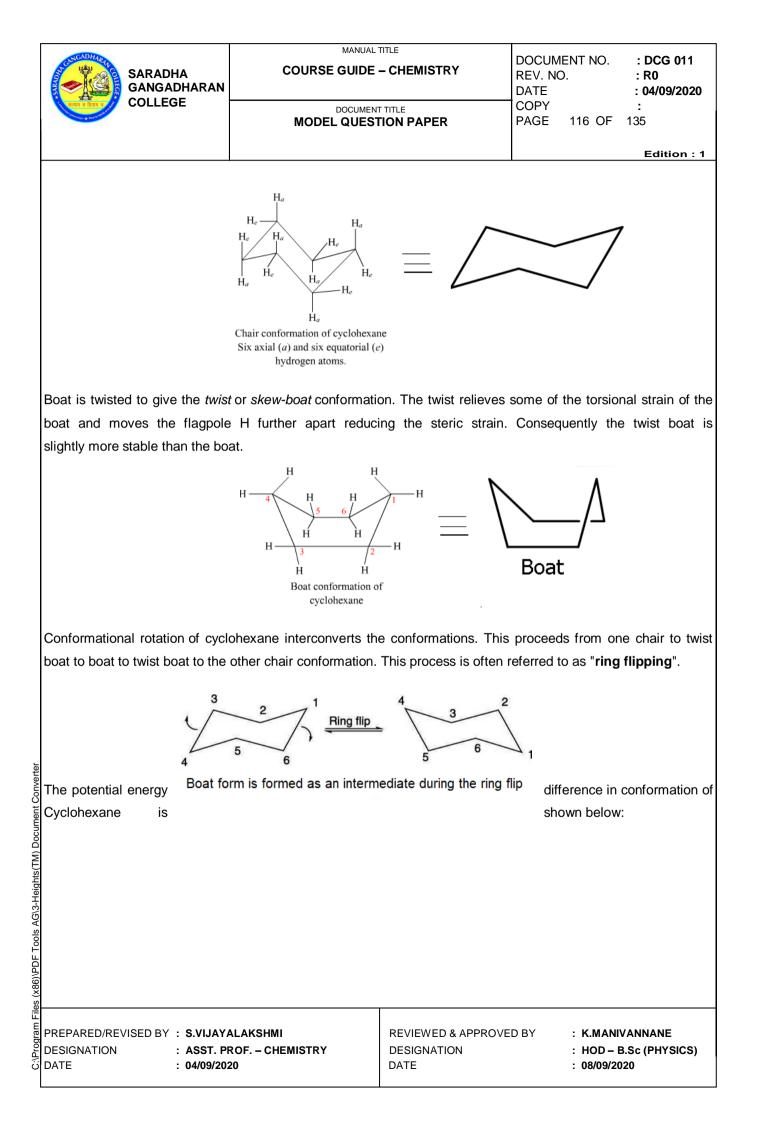
HENDERSON EQUATION:

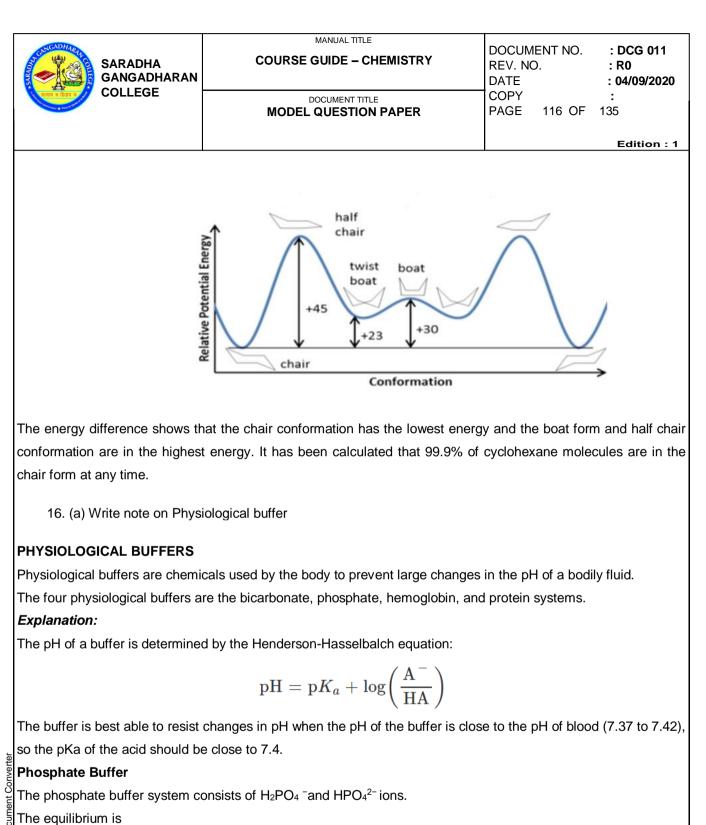
The pH of an acid buffer can be calculated from the dissociation constant, Ka, of the weak acid and the concentrations of the acid and the salt used.

The dissociation expression of the weak acid, HA, may be represented as

HA
$$\rightarrow$$
 H⁺ + A⁻ and

The weak acid is only slightly dissociated and its dissociation is further depressed by the addition of the salt (Na⁺ A⁻) which provides A⁻ ions (Common ion effect). As a result the equilibrium concentration of the unionised acid is nearly equal to the initial concentration of the acid. The equilibrium concentration [A⁻] is presumed to be equal to the initial concentration of the salt added since it is completely dissociated. Thus we can write the equation (1) as


PREPARED/REVISED BY	:	S.VIJAYALAKSHMI
DESIGNATION	:	ASST. PROF. – CHEMISTRY
DATE	:	04/09/2020


C:\Program Files (x86)\PDF Tools AG\3-Heights(TM) Document Converte

: K.MANIVANNANE

SARADHA	MANUAL TITLE	
GANGADHARAN	COURSE GUIDE – CHEMISTRY	DOCUMENT NO. : DCG 011 REV. NO. : R0 DATE : 04/09/2020
COLLEGE	DOCUMENT TITLE MODEL QUESTION PAPER	COPY : PAGE 116 OF 135
		Edition : 1
negative logs of b log _log [H⁺] = Thus from (3) we hav pH	$[H^+]=Ka \times [acid] / [salt] (2)$ e initial concentration of the added acid and both sides of the equation (2), we have og $[H^+] = -\log Ka - \log [acid] / [salt]$ pH and -log Ka = pKa e = pKa - log [acid] / [salt] = pKa + log [salt] / [acid]	
Henc	e, pH = pKa + log [salt] / [acid]	
	alled the Henderson-Hasselbalch equation or the Henderson-Hasselbalch equation for a b	
	pOH = pKb + log [salt] / [base]	
	PART – C (2 X 10 =20)	
	Answer any TWO question	IS.
15. Write a brief note on c CONFORMATION OF	onformational analysis of cyclohexane. CYCLOHEXANE:	
	most stable conformation of cyclohexane. In ial. The axial positions point perpendicular to	
The less stable conformer is t	he <i>boat</i> conformation. This too is almost free eclipsed bonds at the four of the C atoms the four of the C atoms the control of the co	-
torsional strain associated with		

: K.MANIVANNANE : HOD – B.Sc (PHYSICS)

H₂PO₄⁻ (aq) + H₂O ⇔ H₃O+(aq) + HPO₄²⁻ (aq); pKa=7.21

The phosphate buffer can easily maintain a pH of 7.4.

Carbonate Buffer

The equilibrium is

(x86)\PDF

Files (

 $H_2CO_3(aq) + H_2O(I) \rightleftharpoons HCO_3^-(aq) + H_3O^+(aq); pKa=6.1$

gram	PREPARED/REVISED BY DESIGNATION DATE	:	S.VIJAYALAKSHMI
\Pro(DESIGNATION	:	ASST. PROF. – CHEMISTRY
ö	DATE	:	04/09/2020

: K.MANIVANNANE : HOD – B.Sc (PHYSICS)

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 011 : R0 : 04/09/2020
COLLEGE	DOCUMENT TITLE MODEL QUESTION PAPER	COPY PAGE 116 OF	: 135
			Edition:1
This buffer functions in exactly t from pH 7.4.	he same way as the phosphate buffer, but it is	not ideal because it	ts pKa is too far

Perhaps more importantly, the enzyme *carbonic anhydrase* converts H₂CO₃ into CO₂ that is dissolved in the blood and is then exhaled as CO₂gas.

Hemoglobin

The general equation is:

 $HHb^+ + O_2 + H_2O \rightleftharpoons HbO_2 + H_3O^+; pKa=6.8$

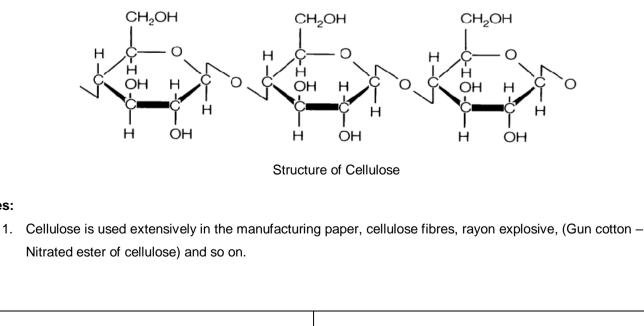
It shows that oxygenation of Hb promotes the formation of H_3O^+ .

This shifts the bicarbonate buffer equilibrium towards CO₂ formation, and CO₂ is released from the red blood cells.

Proteins

A protein is a long chain of amino acid residues, but this long chain still has free carboxylate groups COO⁻ and free amino groups NH₂.

We could write the equation for a protein buffer system as


 NH_3^+ R $COO^ H_2O \Rightarrow H_2N$ R $COO^ H_3O^+$

The protein can then act as a buffer.

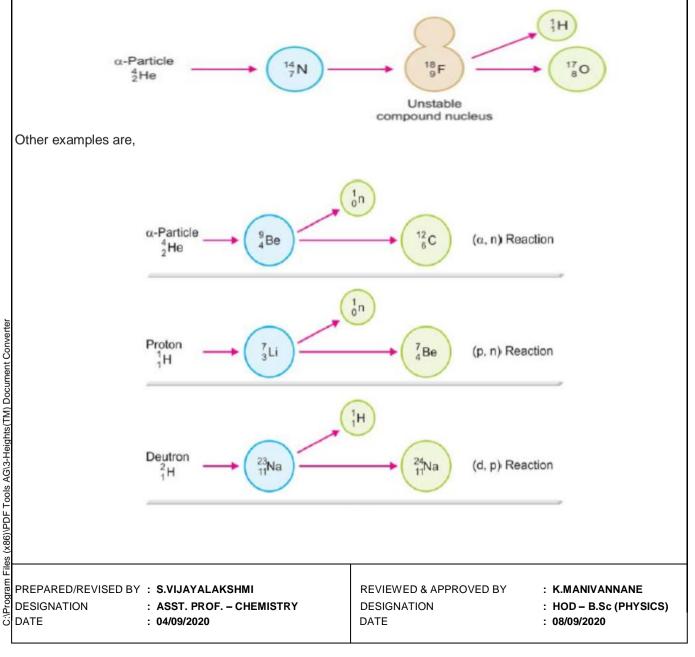
12. Write short note on cellulose:

CELLULOSE:

Cellulose is the major constituent of plant cell walls. Cotton is almost pure cellulose. On hydrolysis cellulose yields D-glucose molecules. Cellulose is a straight chain polysaccharide. The glucose molecules are linked by β (1, 4) glycosidic bond.

la	PREPARED/REVISED BY	:	S.VIJAYALAKSHMI
Š	DESIGNATION	:	ASST. PROF. – CHEMISTRY
ز	DATE	:	04/09/2020

REVIEWED & APPROVED BY DESIGNATION DATE : K.MANIVANNANE

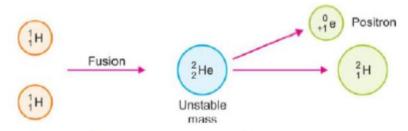

: HOD - B.Sc (PHYSICS)

SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 011 : R0 : 04/09/2020
COLLEGE	DOCUMENT TITLE MODEL QUESTION PAPER	COPY PAGE 116 OF	: 135 Edition : 1

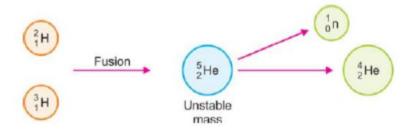
- 2. Human cannot use cellulose as food because our digestive systems do not contain the necessary enzymes (glycosidase or celluloses) that can hydrolyse the cellulose.
- 17. (a) Write a brief account on nuclear reaction:

NUCLEAR FISSION REACTIONS

In these reactions an atomic nucleus is broken or fissioned into two or more fragments. This is accomplished by bombarding an atom by alpha particles (${}^{4}{}_{2}$ He), neutrons (${}^{1}{}_{0}$ n), protons (${}^{1}{}_{1}$ H), deutrons (${}^{2}{}_{1}$ H), etc. This does not apply to neutrons which are electrically neutral. The projectile enters the nucleus and produces an unstable 'compound nucleus'. It decomposes instantaneously to give the products. For example, ${}^{14}{}_7$ N when struck by a α -particle first forms an intermediate unstable compound nucleus, ${}^{18}{}_9$ F, which at once cleaves to form stables ${}^{17}{}_8$ O.



SARADHA GANGADHARAN	MANUAL TITLE COURSE GUIDE – CHEMISTRY	DOCUMENT NO. REV. NO. DATE	: DCG 011 : R0 : 04/09/2020
COLLEGE	DOCUMENT TITLE MODEL QUESTION PAPER	COPY PAGE 116 OF	: 135 Edition : 1


NUCLEAR FUSION REACTIONS

These reactions take place by combination or fusion of two small nuclei into a larger nucleus. At extremely high temperatures the kinetic energy of these nuclei overweighs the electrical repulsions between them. Thus they coalesce to give an unstable mass which decomposes to give a stable large nucleus and a small particle as proton, neutron, positron, etc. For example:Two hydrogen nuclei, ¹₁H, fuse to produce a deuterium nucleus, ²₁H.

(1) Two hydrogen nuclei, ${}_{1}^{1}H$, fuse to produce a deuterium nucleus, ${}_{1}^{2}H$.

(2) Deuterium nucleus, ²₁H, and tritium nucleus, ³₁H, combine to give helium nucleus, ⁴₂He with the expulsion of a neutron.

(b) How are α -rays produce? Mention its properties

Nuclear fusion reaction takes place at very high temperature of about 108 K. Therefore, this reaction is called thermonuclear reaction.

$_1 \text{ H}^2$	+	1H ³	\rightarrow	2 He ⁴ + 0 n ¹	+	Energy
Deuterium		Tritium		Helium(a)		
PROPERTIES OF ALPHA RAY	YS					

(1) **Nature:** They consist of streams of α -particles. By measurement of their e/m, Rutherford showed that they have a mass of 4 amu and charge of +2. They are helium nuclei and may be represented as ${}^{4}_{2}\alpha$ or ${}^{4}_{2}$ He.

(2) Velocity: α-particles are ejected from radioactive nuclei with very high velocity, about one-tenth that of light.

C:\Program Files (x86)\PDF Tools AG\3-Heights(TM) Document Converter	(1) Nature: Th they have a ⁴ 2He.	Deuterium T IES OF ALPHA RAYS ey consist of streams of α-pai a mass of 4 amu and charge of α-particles are ejected from ra
C:\Program Fil	PREPARED/REVISED E DESIGNATION DATE	BY : S.VIJAYALAKSHMI : ASST. PROF. – CHEMISTRY : 04/09/2020

: K.MANIVANNANE

COLLEGE DOCUMENT TITLE COPY the page of	 (3) Penetro of penetro of penetro few cello (4) Ionisative velocity them to 18. (a) Giv Applic Medici surgication of the surgica	rating power: B etration through r entimetres of air. ation: They caus y and attraction f o positive ions. ve an account on cations of radioi sine: Diagnosis a al environments, try and techno esses, research, et ulture: Plague co estoration of art of eology: Geologia	ecause of their of matter. They are e intense ionisation for electrons, α-p n application of F sotopes nd treatment of etc. blogy: review of tc. bjects, verification cal event dating.	charge and relatively large s e stopped by a sheet of pape ation of a gas through which the particles break away electron Radioactive isotopes in Agric f diseases, sterilization of pro- f materials and welding in servation, etc. on of historic or artistic object , etc.	PAGE 116 OF 135 Edition : Size, α-particles have very little powe er, 0.01 mm thick aluminium foil or a they pass. On account of their high ns from gas molecules and convert culture and medicine: roducts frequently used in clinical a n construction, control of producti
 (3) Penetrating power: Because of their charge and relatively large size, α-particles have very little power of penetration through matter. They are stopped by a sheet of paper, 0.01 mm thick aluminium foil or few centimetres of air. (4) Ionisation: They cause intense ionisation of a gas through which they pass. On account of their hig velocity and attraction for electrons, α-particles break away electrons from gas molecules and convert them to positive ions. 18. (a) Give an account on application of Radioactive isotopes in Agriculture and medicine: Applications of radioisotopes Medicine: Diagnosis and treatment of diseases, sterilization of products frequently used in clinical surgical environments, etc. Industry and technology: review of materials and welding in construction, control of produ processes, research, etc. Agriculture: Plague control, food conservation, etc. Archaeology: Geological event dating, etc. Research: Universe, industry, medicine, etc. Pharmacology: The study of the metabolism of drugs before they are authorized for public use. Radioactive isotopes which are useful in medicine lostope Use ISOTOPES SYMBOL USES Tritium 1 H³ Measure water content of the body Carbon - 11 6 C¹¹ Brain scan Carbon - 14 6 C¹⁴ Radio immunology Iodine - 131 6^{31¹³¹} Diagnosis of damaged heart muscles and hyper thyroidism Mercury - 197 8⁰/₁₉¹⁹⁷ Kidney scan Phosphorous-32 1¹/₁₉¹⁹⁷ Diagnosis of anaemia 	of pene few cer (4) Ionisa velocity them to 18. (a) Giv Applic • Medici surgica • Indust proces • Agricu • Art: re • Archae • Pharm Radioa	etration through r entimetres of air. ation: They caus ation: They caus by and attraction f o positive ions. ve an account on cations of radioi sine: Diagnosis a al environments, try and techno sses, research, et ulture: Plague co estoration of art of eology: Geologia	matter. They are e intense ionisat for electrons, α-p n application of F sotopes nd treatment of etc. logy: review of tc. ontrol, food cons bjects, verification cal event dating.	e stopped by a sheet of pape ation of a gas through which the particles break away electron Radioactive isotopes in Agric f diseases, sterilization of pro- f materials and welding in servation, etc. on of historic or artistic object a, etc.	size, α-particles have very little powe er, 0.01 mm thick aluminium foil or a they pass. On account of their high ns from gas molecules and convert culture and medicine: roducts frequently used in clinical a n construction, control of producti
of penetration through matter. They are stopped by a sheet of paper, 0.01 mm thick aluminium foil or few centimetres of air. (4) Ionisation: They cause intense ionisation of a gas through which they pass. On account of their hig velocity and attraction for electrons, α-particles break away electrons from gas molecules and convert them to positive ions. 18. (a) Give an account on application of Radioactive isotopes in Agriculture and medicine: Applications of radioisotopes • Medicine: Diagnosis and treatment of diseases, sterilization of products frequently used in clinical surgical environments, etc. • Industry and technology: review of materials and welding in construction, control of product processes, research, etc. • Agriculture: Plague control, food conservation, etc. • Archaeology: Geological event dating, etc. • Pharmacology: The study of the metabolism of drugs before they are authorized for public use. Radioactive isotopes which are useful in medicine Isotope Use ISOTOPES SYMBOL USES Tritium 1 H ³ Measure water content of the body Carbon - 11 6 Cl ¹⁴ Radio immunology Iodine - 131 6a l ¹³¹ Diagnosis of damaged heart muscles and hyper thyroidism Mercury - 197 eoHg ¹⁹⁷⁷ Kidney scan Phosphorous-32 1e ⁵²² Detection of eye tumours	of pene few cer (4) Ionisa velocity them to 18. (a) Giv Applic • Medici surgica • Indust proces • Agricu • Art: re • Archae • Pharm Radioa	etration through r entimetres of air. ation: They caus ation: They caus by and attraction f o positive ions. ve an account on cations of radioi sine: Diagnosis a al environments, try and techno sses, research, et ulture: Plague co estoration of art of eology: Geologia	matter. They are e intense ionisat for electrons, α-p n application of F sotopes nd treatment of etc. logy: review of tc. ontrol, food cons bjects, verification cal event dating.	e stopped by a sheet of pape ation of a gas through which the particles break away electron Radioactive isotopes in Agric f diseases, sterilization of pro- f materials and welding in servation, etc. on of historic or artistic object a, etc.	er, 0.01 mm thick aluminium foil or a they pass. On account of their high ns from gas molecules and convert culture and medicine: roducts frequently used in clinical a n construction, control of producti
of penetration through matter. They are stopped by a sheet of paper, 0.01 mm thick aluminium foil or few centimetres of air. (4) Ionisation: They cause intense ionisation of a gas through which they pass. On account of their hig velocity and attraction for electrons, α-particles break away electrons from gas molecules and convert them to positive ions. 18. (a) Give an account on application of Radioactive isotopes in Agriculture and medicine: Applications of radioisotopes • Medicine: Diagnosis and treatment of diseases, sterilization of products frequently used in clinical surgical environments, etc. • Industry and technology: review of materials and welding in construction, control of product processes, research, etc. • Archaeology: Geological event dating, etc. • Archaeology: Geological event dating, etc. • Pharmacology: The study of the metabolism of drugs before they are authorized for public use. Radioactive isotopes which are useful in medicine Isotope Use ISOTOPES SYMBOL USES Tritium 1 H ³ Measure water content of the body Carbon - 14 6 Cl ⁴ Radio immunology Iodine - 131 63 l ¹³¹ Diagnosis of damaged heart muscles and hyper thyroidism Mercury - 197 where ¹⁹⁷ Kidney scan Phosphorous-32 1s ²⁹² Detection of eye tumours	of pene few cer (4) Ionisa velocity them to 18. (a) Giv Applic • Medici surgica • Indust proces • Agricu • Art: re • Archae • Pharm Radioa	etration through r entimetres of air. ation: They caus ation: They caus by and attraction f o positive ions. ve an account on cations of radioi sine: Diagnosis a al environments, try and techno sses, research, et ulture: Plague co estoration of art of eology: Geologia	matter. They are e intense ionisat for electrons, α-p n application of F sotopes nd treatment of etc. logy: review of tc. ontrol, food cons bjects, verification cal event dating.	e stopped by a sheet of pape ation of a gas through which the particles break away electron Radioactive isotopes in Agric f diseases, sterilization of pro- f materials and welding in servation, etc. on of historic or artistic object a, etc.	er, 0.01 mm thick aluminium foil or a they pass. On account of their high ns from gas molecules and convert culture and medicine: roducts frequently used in clinical a n construction, control of producti
 few centimetres of air. (4) Ionisation: They cause intense ionisation of a gas through which they pass. On account of their higi velocity and attraction for electrons, α-particles break away electrons from gas molecules and convert them to positive ions. 18. (a) Give an account on application of Radioactive isotopes in Agriculture and medicine: Applications of radioisotopes Medicine: Diagnosis and treatment of diseases, sterilization of products frequently used in clinical surgical environments, etc. Industry and technology: review of materials and welding in construction, control of product processes, research, etc. Agriculture: Plague control, food conservation, etc. Art: restoration of art objects, verification of historic or artistic objects, etc. Archaeology: Geological event dating, etc. Research: Universe, industry, medicine, etc. Pharmacology: The study of the metabolism of drugs before they are authorized for public use. Radioactive isotopes which are useful in medicine Isotope Use ISOTOPES SYMBOL USES Tritium 1 H³ Measure water content of the body Carbon - 11 6 C¹¹ Brain scan Carbon - 11 6 C¹⁴ Radio immunology Iodine - 131 8a¹¹³¹ Diagnosis of damaged heart muscles and hyper thyroidism Mercury - 197 8o/Hg¹⁹⁷ Kidney scan Phosphorous-32 1sP³² Detection of eye tumours Iron - 59 2a⁰Fe⁶³ Diagnosis of anaemia 	few cer (4) Ionisa velocity them to 18. (a) Giv Applic Medici surgica Indust proces Agricu Art: rea Archae Pharm Radioa	entimetres of air. ation: They caus ation: They caus at and attraction f o positive ions. ve an account on cations of radioi ine: Diagnosis a al environments, try and techno asses, research, et ulture: Plague co estoration of art of eology: Geologia	e intense ionisat for electrons, α-p n application of F sotopes nd treatment of etc. logy: review of tc. pontrol, food cons bjects, verifications cal event dating	tion of a gas through which the particles break away electron Radioactive isotopes in Agric f diseases, sterilization of professorial f materials and welding in servation, etc.	they pass. On account of their high ns from gas molecules and convert culture and medicine: roducts frequently used in clinical a n construction, control of producti
 (4) Ionisation: They cause intense ionisation of a gas through which they pass. On account of their hig velocity and attraction for electrons, α-particles break away electrons from gas molecules and convertement to positive ions. 18. (a) Give an account on application of Radioactive isotopes in Agriculture and medicine: Applications of radioisotopes Medicine: Diagnosis and treatment of diseases, sterilization of products frequently used in clinical surgical environments, etc. Industry and technology: review of materials and welding in construction, control of product processes, research, etc. Agriculture: Plague control, food conservation, etc. Art: restoration of art objects, verification of historic or artistic objects, etc. Archaeology: Geological event dating, etc. Research: Universe, industry, medicine, etc. Pharmacology: The study of the metabolism of drugs before they are authorized for public use. Radioactive isotopes which are useful in medicine lsotope Use ISOTOPES SYMBOL USES Tritium 1 H³ Measure water content of the body Carbon - 11 6 C¹¹ Brain scan Carbon - 14 6 C¹⁴ Radio immunology Iodine - 131 63¹¹³¹ Diagnosis of damaged heart muscles and hyper thyroidism Mercury - 197 80/Hg¹⁹⁷ Kidney scan Phosphorous-32 (sP³² Detection of eye turnours Iron - 59 20⁶Fe⁵⁹ Diagnosis of anaemia 	 (4) Ionisa velocity them to 18. (a) Giv Applic Medici surgica Indust proces Agricu Art: res Archae Resea Pharm Radioa 	ation: They caus by and attraction f o positive ions. ve an account on cations of radioi sine: Diagnosis a al environments, try and techno sses, research, et ulture: Plague co estoration of art of eology: Geologia	for electrons, α-p n application of F sotopes nd treatment of etc. logy: review of tc. ontrol, food cons bjects, verification cal event dating.	particles break away electron Radioactive isotopes in Agric f diseases, sterilization of pr f materials and welding in servation, etc. on of historic or artistic object , etc.	ns from gas molecules and convert culture and medicine: roducts frequently used in clinical a n construction, control of producti
velocity and attraction for electrons, α-particles break away electrons from gas molecules and convertent to positive ions. 18. (a) Give an account on application of Radioactive isotopes in Agriculture and medicine: Applications of radioisotopes • Medicine: Diagnosis and treatment of diseases, sterilization of products frequently used in clinical surgical environments, etc. • Industry and technology: review of materials and welding in construction, control of products processes, research, etc. • Agriculture: Plague control, food conservation, etc. • Art: restoration of art objects, verification of historic or artistic objects, etc. • Archaeology: Geological event dating, etc. • Pharmacology: The study of the metabolism of drugs before they are authorized for public use. Radioactive isotopes which are useful in medicine lsotope Use Intrium t H ³ Measure water content of the body Carbon - 11 6 C ¹⁴ Radio immunology Iodine - 131 sal ¹³¹ Diagnosis of damaged heart muscles and hyper thyroidism Mercury - 197 soHg ¹⁹⁷ Kidney scan Phosphorous-32 tsP ³² Detection of eye tumours	velocity them to 18. (a) Giv Applic • Medici surgica • Indust proces • Agricu • Art: re • Archae • Resea • Pharm	y and attraction f o positive ions. ve an account on cations of radioi ine: Diagnosis a al environments, try and techno sses, research, et ulture: Plague co estoration of art of eology: Geologia	for electrons, α-p n application of F sotopes nd treatment of etc. logy: review of tc. ontrol, food cons bjects, verification cal event dating.	particles break away electron Radioactive isotopes in Agric f diseases, sterilization of pr f materials and welding in servation, etc. on of historic or artistic object , etc.	ns from gas molecules and convert culture and medicine: roducts frequently used in clinical a n construction, control of producti
 them to positive ions. 18. (a) Give an account on application of Radioactive isotopes in Agriculture and medicine: Applications of radioisotopes Medicine: Diagnosis and treatment of diseases, sterilization of products frequently used in clinical surgical environments, etc. Industry and technology: review of materials and welding in construction, control of produprocesses, research, etc. Agriculture: Plague control, food conservation, etc. Art: restoration of art objects, verification of historic or artistic objects, etc. Archaeology: Geological event dating, etc. Research: Universe, industry, medicine, etc. Pharmacology: The study of the metabolism of drugs before they are authorized for public use. Radioactive isotopes which are useful in medicine Isotope Use <u>ISOTOPES SYMBOL USES</u> <u>Tritium 1 H³ Measure water content of the body</u> Carbon - 11 6 C¹¹ Brain scan Carbon - 14 6 C¹⁴ Radio immunology lodine - 131 5³ 1¹³¹ Diagnosis of damaged heart muscles and hyper thyroidism Mercury - 197 80Hg¹⁹⁷ Kidney scan Phosphorous-32 (sFe⁵⁹ Diagnosis of anaemia 	them to 18. (a) Giv Applic Medici surgica Indust proces Agricu Art: rea Archae Resea Pharm Radioa	o positive ions. ve an account on cations of radioi ine: Diagnosis a al environments, try and techno sses, research, ef ulture: Plague co estoration of art of eology: Geologia	n application of F sotopes nd treatment of etc. logy: review of tc. pontrol, food cons bjects, verification cal event dating	Radioactive isotopes in Agric diseases, sterilization of pr f materials and welding ir servation, etc. on of historic or artistic object , etc.	culture and medicine: roducts frequently used in clinical a n construction, control of producti
 18. (a) Give an account on application of Radioactive isotopes in Agriculture and medicine: Applications of radioisotopes Medicine: Diagnosis and treatment of diseases, sterilization of products frequently used in clinical surgical environments, etc. Industry and technology: review of materials and welding in construction, control of product processes, research, etc. Agriculture: Plague control, food conservation, etc. Art: restoration of art objects, verification of historic or artistic objects, etc. Archaeology: Geological event dating, etc. Research: Universe, industry, medicine, etc. Pharmacology: The study of the metabolism of drugs before they are authorized for public use. Radioactive isotopes which are useful in medicine Isotope Use ISOTOPES SYMBOL USES Tritium 1H³ Measure water content of the body Carbon - 11 6C¹¹ Brain scan Carbon - 14 6C¹⁴ Radio immunology Iodine - 131 6³¹¹³¹ Diagnosis of damaged heart muscles and hyper thyroidism Mercury - 197 eoIHg¹⁹⁷ Kidney scan Phosphorous-32 1¹⁵P³² Detection of eye tumours Iron - 59 2^{ab}Fe⁵⁹ Diagnosis of anaemia 	 18. (a) Giv Applic Medici surgica Indust proces Agricu Art: res Archae Reseat Pharm Radioa 	ve an account on cations of radioi ine: Diagnosis a al environments, try and techno sses, research, et ulture: Plague co estoration of art of eology: Geologia	sotopes nd treatment of etc. logy: review of tc. ontrol, food cons bjects, verificatio cal event dating	f diseases, sterilization of pr f materials and welding in servation, etc. on of historic or artistic object n, etc.	roducts frequently used in clinical a n construction, control of producti
Applications of radioisotopes • Medicine: Diagnosis and treatment of diseases, sterilization of products frequently used in clinical surgical environments, etc. • Industry and technology: review of materials and welding in construction, control of produ processes, research, etc. • Agriculture: Plague control, food conservation, etc. • Art: restoration of art objects, verification of historic or artistic objects, etc. • Archaeology: Geological event dating, etc. • Research: Universe, industry, medicine, etc. • Pharmacology: The study of the metabolism of drugs before they are authorized for public use. Radioactive isotopes which are useful in medicine Isotope Use ISOTOPES SYMBOL Image: Tritium 1 H ³ Measure water content of the body Carbon - 11 6 C ¹⁴ Radio immunology Iodine - 131 63 I ¹³¹ Diagnosis of damaged heart muscles and hyper thyroidism Mercury - 197 80 Hg ¹⁹⁷ Kidney scan Phosphorous-32 15 P ³² Detection of eye tumours Iron - 59 26 Fe ⁵⁹	 Applic Medici surgica Indust proces Agricu Art: res Archae Resea Pharm Radioa 	cations of radioi ine: Diagnosis a al environments, try and techno sses, research, et ulture: Plague co estoration of art of eology: Geologia	sotopes nd treatment of etc. logy: review of tc. ontrol, food cons bjects, verificatio cal event dating	f diseases, sterilization of pr f materials and welding in servation, etc. on of historic or artistic object n, etc.	roducts frequently used in clinical a n construction, control of producti
 Medicine: Diagnosis and treatment of diseases, sterilization of products frequently used in clinical surgical environments, etc. Industry and technology: review of materials and welding in construction, control of produprocesses, research, etc. Agriculture: Plague control, food conservation, etc. Art: restoration of art objects, verification of historic or artistic objects, etc. Archaeology: Geological event dating, etc. Research: Universe, industry, medicine, etc. Pharmacology: The study of the metabolism of drugs before they are authorized for public use. Radioactive isotopes which are useful in medicine lsotope Use ISOTOPES SYMBOL USES Tritium 1 H³ Measure water content of the body Carbon - 11 6 C¹¹ Brain scan Carbon - 14 6 C¹⁴ Radio immunology Iodine - 131 53¹¹³¹ Diagnosis of damaged heart muscles and hyper thyroidism Mercury - 197 86Hg¹⁹⁷ Kidney scan Phosphorous-32 15⁹³² Detection of eye tumours Iron - 59 26⁶Fe⁵⁹ 	 Medici surgica Indust proces Agricu Art: rei Archae Resea Pharm Radioa 	ine: Diagnosis a al environments, try and techno sses, research, et ulture: Plague co estoration of art ol eology: Geologio	nd treatment of etc. logy: review of tc. ontrol, food cons bjects, verificatio cal event dating	f materials and welding in servation, etc. on of historic or artistic object , etc.	n construction, control of producti
 surgical environments, etc. Industry and technology: review of materials and welding in construction, control of produprocesses, research, etc. Agriculture: Plague control, food conservation, etc. Art: restoration of art objects, verification of historic or artistic objects, etc. Archaeology: Geological event dating, etc. Research: Universe, industry, medicine, etc. Pharmacology: The study of the metabolism of drugs before they are authorized for public use. Radioactive isotopes which are useful in medicine Isotope Use <u>ISOTOPES SYMBOL USES</u> <u>Tritium 1 H³ Measure water content of the body</u> Carbon - 11 6 C¹¹ Brain scan Carbon - 14 6 C¹⁴ Radio immunology Iodine - 131 5³1¹³¹ Diagnosis of damaged heart muscles and hyper thyroidism Mercury - 197 e0Hg¹⁹⁷ Kidney scan Phosphorous-32 15⁹³² Detection of eye tumours Iron - 59 26⁶⁵⁹ Diagnosis of anaemia 	surgica Indust proces Agricu Art: res Archae Resea Pharm Radioa	al environments, try and techno sses, research, et ulture: Plague co estoration of art of eology: Geologic	etc. Iogy: review of tc. ontrol, food cons bjects, verificatio cal event dating	f materials and welding in servation, etc. on of historic or artistic object , etc.	n construction, control of producti
 Industry and technology: review of materials and welding in construction, control of produprocesses, research, etc. Agriculture: Plague control, food conservation, etc. Art: restoration of art objects, verification of historic or artistic objects, etc. Archaeology: Geological event dating, etc. Research: Universe, industry, medicine, etc. Pharmacology: The study of the metabolism of drugs before they are authorized for public use. Radioactive isotopes which are useful in medicine Isotope Use <u>ISOTOPES</u> <u>SYMBOL</u> <u>USES</u> <u>Tritium 1 H³ Measure water content of the body</u> <u>Carbon - 11 6 C¹¹ Brain scan</u> <u>Carbon - 14 6 C¹⁴ Radio immunology</u> lodine - 131 5³ I¹³¹ Diagnosis of damaged heart muscles and hyper thyroidism <u>Mercury - 197 80 Hg¹⁹⁷ Kidney scan</u> <u>Phosphorous-32 16P³² Detection of eye tumours</u> <u>Iron - 59 20 Fe⁶⁹ Diagnosis of anaemia</u> 	 Indust proces Agricut Art: res Archae Reseat Pharm Radioa 	try and techno sses, research, et ulture: Plague co estoration of art of eology: Geologic	logy: review of tc. ontrol, food cons bjects, verificatio cal event dating	servation, etc. on of historic or artistic objec I, etc.	
processes, research, etc. Agriculture: Plague control, food conservation, etc. Art: restoration of art objects, verification of historic or artistic objects, etc. Archaeology: Geological event dating, etc. Research: Universe, industry, medicine, etc. Pharmacology: The study of the metabolism of drugs before they are authorized for public use. Radioactive isotopes which are useful in medicine Isotope Use ISOTOPES SYMBOL USES Tritium 1 H ³ Measure water content of the body Carbon - 11 6 C ¹¹ Brain scan Carbon - 14 6 C ¹⁴ Radio immunology Iodine – 131 53 I ¹³¹ Diagnosis of damaged heart muscles and hyper thyroidism Mercury - 197 80Hg ¹⁹⁷ Kidney scan Phosphorous-32 15P ³² Detection of eye tumours Iron - 59 26Fe ⁵⁹	proces Agricu Art: re: Archae Resea Pharm Radioa	esses, research, et alture: Plague co estoration of art of eology: Geologic	tc. ontrol, food cons bjects, verificatio cal event dating	servation, etc. on of historic or artistic objec I, etc.	
 Agriculture: Plague control, food conservation, etc. Art: restoration of art objects, verification of historic or artistic objects, etc. Archaeology: Geological event dating, etc. Research: Universe, industry, medicine, etc. Pharmacology: The study of the metabolism of drugs before they are authorized for public use. Radioactive isotopes which are useful in medicine Isotope Use <u>ISOTOPES SYMBOL USES</u> Tritium 1 H³ Measure water content of the body Carbon - 11 6 C¹¹ Brain scan Carbon - 14 6 C¹⁴ Radio immunology Iodine - 131 5³ I¹³¹ Diagnosis of damaged heart muscles and hyper thyroidism Mercury - 197 80Hg¹⁹⁷ Kidney scan Phosphorous-32 15P³² Detection of eye tumours Iron - 59 26Fe⁵⁹ Diagnosis of anaemia 	 Agricu Art: rei Archae Reseat Pharm Radioa 	ulture: Plague co estoration of art of eology: Geologic	ontrol, food cons bjects, verificatio cal event dating	on of historic or artistic objec , etc.	cts, etc.
 Art: restoration of art objects, verification of historic or artistic objects, etc. Archaeology: Geological event dating, etc. Research: Universe, industry, medicine, etc. Pharmacology: The study of the metabolism of drugs before they are authorized for public use. Radioactive isotopes which are useful in medicine Isotope Use ISOTOPES SYMBOL USES Tritium 1 H³ Measure water content of the body Carbon - 11 6 C¹¹ Brain scan Carbon - 14 6 C¹⁴ Radio immunology Iodine - 131 53 I¹³¹ Diagnosis of damaged heart muscles and hyper thyroidism Mercury - 197 80Hg¹⁹⁷ Kidney scan Phosphorous-32 15P³² Detection of eye tumours Iron - 59 26Fe⁵⁹ Diagnosis of anaemia 	 Art: re: Archae Resea Pharm Radioa 	estoration of art of eology: Geologie	bjects, verificatio	on of historic or artistic objec , etc.	cts, etc.
 Archaeology: Geological event dating, etc. Research: Universe, industry, medicine, etc. Pharmacology: The study of the metabolism of drugs before they are authorized for public use. Radioactive isotopes which are useful in medicine Isotope Use ISOTOPES SYMBOL USES Tritium 1 H³ Measure water content of the body Carbon - 11 6 C¹¹ Brain scan Carbon - 14 6 C¹⁴ Radio immunology Iodine - 131 f³ I¹³¹ Diagnosis of damaged heart muscles and hyper thyroidism Mercury - 197 80Hg¹⁹⁷ Kidney scan Phosphorous-32 1sP³² Detection of eye tumours Iron - 59 26Fe⁵⁹ 	 Archae Resea Pharm Radioa 	eology: Geologi	cal event dating	, etc.	cts, etc.
 Research: Universe, industry, medicine, etc. Pharmacology: The study of the metabolism of drugs before they are authorized for public use. Radioactive isotopes which are useful in medicine Isotope Use ISOTOPES SYMBOL USES Tritium 1 H³ Measure water content of the body Carbon - 11 6 C¹¹ Brain scan Carbon - 14 6 C¹⁴ Radio immunology Iodine - 131 5³ I¹³¹ Diagnosis of damaged heart muscles and hyper thyroidism Mercury - 197 80Hg¹⁹⁷ Kidney scan Phosphorous-32 15P³² Detection of eye tumours Iron - 59 26Fe⁵⁹ Diagnosis of anaemia 	Resea Pharm Radioa		•		
 Pharmacology: The study of the metabolism of drugs before they are authorized for public use. Radioactive isotopes which are useful in medicine Isotope Use ISOTOPES SYMBOL USES Tritium 1 H³ Measure water content of the body Carbon - 11 6 C¹¹ Brain scan Carbon - 14 6 C¹⁴ Radio immunology Iodine - 131 5³ I¹³¹ Diagnosis of damaged heart muscles and hyper thyroidism Mercury - 197 8⁰ Hg¹⁹⁷ Kidney scan Phosphorous-32 1⁵ P³² Detection of eye tumours Iron - 59 2⁶ Fe⁵⁹ Diagnosis of anaemia 	Pharm Radioa	Irch: Universe, in	ndustry, medicine		
Radioactive isotopes which are useful in medicine Isotope UseISOTOPESSYMBOLUSESTritium1 H³Measure water content of the bodyCarbon - 116 C ¹¹ Brain scanCarbon - 146 C ¹⁴ Radio immunologyIodine - 13153 I ¹³¹ Diagnosis of damaged heart muscles and hyper thyroidismMercury - 19780Hg ¹⁹⁷ Kidney scanPhosphorous-3215P ³² Detection of eye tumoursIron - 5926Fe ⁵⁹ Diagnosis of anaemia	Radioa			e, etc.	
ISOTOPESSYMBOLUSESTritium1 H3Measure water content of the bodyCarbon - 116 C11Brain scanCarbon - 146 C14Radio immunologyIodine - 13153 I131Diagnosis of damaged heart muscles and hyper thyroidismMercury - 19780Hg197Kidney scanPhosphorous-3215P32Detection of eye tumoursIron - 5926Fe ⁵⁹ Diagnosis of anaemia		nacology: The st	udy of the metal	bolism of drugs before they	are authorized for public use.
ISOTOPESSYMBOLUSESTritium1 H3Measure water content of the bodyCarbon - 116 C11Brain scanCarbon - 146 C14Radio immunologyIodine - 13153 I131Diagnosis of damaged heart muscles and hyper thyroidismMercury - 19780Hg197Kidney scanPhosphorous-3215P32Detection of eye tumoursIron - 5926Fe ⁵⁹ Diagnosis of anaemia					
Tritium1 H³Measure water content of the bodyCarbon - 116 C11Brain scanCarbon - 146 C14Radio immunologyIodine - 13153 I131Diagnosis of damaged heart muscles and hyper thyroidismMercury - 19780Hg197Kidney scanPhosphorous-3215P32Detection of eye tumoursIron - 5926Fe ⁵⁹ Diagnosis of anaemia	IS			in medicine Isotope Use	
Carbon - 116 C11Brain scanCarbon - 146 C14Radio immunologyIodine - 13153 I131Diagnosis of damaged heart muscles and hyper thyroidismMercury - 19780Hg197Kidney scanPhosphorous-3215P32Detection of eye tumoursIron - 5926Fe ⁵⁹ Diagnosis of anaemia					
Carbon - 146 C14Radio immunologyIodine - 13153 I131Diagnosis of damaged heart muscles and hyper thyroidismMercury - 19780Hg197Kidney scanPhosphorous-3215P32Detection of eye tumoursIron - 5926Fe59Diagnosis of anaemia	Tritium	n	1 H ³	Measure water content c	of the body
Iodine – 13153 I131Diagnosis of damaged heart muscles and hyper thyroidismMercury - 19780Hg197Kidney scanPhosphorous-3215P32Detection of eye tumoursIron - 5926Fe59Diagnosis of anaemia	Carbor	n - 11	6 C ¹¹	Brain scan	
Mercury - 197 $_{80}$ Hg ¹⁹⁷ Kidney scanPhosphorous-32 $_{15}$ P ³² Detection of eye tumoursIron - 59 $_{26}$ Fe ⁵⁹ Diagnosis of anaemia	Carbor	n - 14	6 C ¹⁴	Radio immunology	
Mercury - 197 $_{80}$ Hg ¹⁹⁷ Kidney scanPhosphorous-32 $_{15}$ P ³² Detection of eye tumoursIron - 59 $_{26}$ Fe ⁵⁹ Diagnosis of anaemia	lodine	– 131	₅₃ ¹³¹	Diagnosis of damaged	d heart muscles and hyper
Phosphorous-3215P32Detection of eye tumoursIron - 5926Fe ⁵⁹ Diagnosis of anaemia				thyroidism	
Iron - 59 26Fe ⁵⁹ Diagnosis of anaemia	Mercur	ry - 197	₈₀ Hg ¹⁹⁷	Kidney scan	
	Phosph	horous-32	15P ³²	Detection of eye tumours	S
	Iron - 5	59	26 Fe ⁵⁹	Diagnosis of anaemia	
	Coball	- 00	2700		

: K.MANIVANNANE

SARADHA GANGADHARAN	MANUAL COURSE GUIDE		DOCUMENT NO. REV. NO. DATE	: DCG 011 : R0 : 04/09/2020
COLLEGE	DOCUMEN MODEL QUES		COPY PAGE 116 OF	: 135
				Edition : 1
MUTAROTATION:				
When D-glucose is crys	tallized at room temperat	ture and a fresh solu	ition is prepared, its sp	ecific rotation
of polarised light is 112°	; but after 12 -18 hrs it cl	nanges to +52.5°		
This change in rotation	with time is called as mut	arotation.		
Glucose has two anome	ers α and β .			
		Q		
		ç	CULOU	
CH2OH	н н-	ОН	CH2OH OH	
НН	0 но-		H H U	
ОН	н — н-	—он — —он	он н	
	ОН	CH ₂ OH		
α-D-glucopy		ucose	H On β-D-glucopyranose	2
u-D-Blueopy		ar form)	p-p-grocopyranose	
	Mutarotat	ion Equilibrium		
5				
22				

 PREPARED/REVISED BY
 : S.VIJAYALAKSHMI

 DESIGNATION
 : ASST. PROF. – CHEI

 DATE
 : 04/09/2020

 DESIGNATION : ASST. PROF. – CHEMISTRY

REVIEWED & APPROVED BY DESIGNATION DATE

: K.MANIVANNANE